MingCheng Wang

and 6 more

The poor prognosis of triple-negative breast cancer (TNBC) resulting from its high metastasis, whereas inflammation accompanied by excessive reactive oxygen species (ROS) is prone to aggravate tumor metastasis. Although photothermal therapy (PTT) has extremely high therapeutic efficiency, the crafty tumor cells allow increase the expression of heat shock proteins to limit its effect, and PTT induced inflammation is also thought to be a potential trigger for tumor metastasis. Herein, myricetin, iron ions and polyvinylpyrrolidone were utilized to develop nanomedicines by self-assembly strategy for the treatment of metastatic TNBC. The nanomedicines with marvellous water solubility and dispersion can inhibit glucose transporter 1 and interfer with mitochondrial function to block the energy supply of tumor cells, achieving starvation therapy on TNBC cells. Nanomedicines with excellent photothermal conversion properties allow down-regulate the expression of HSPs to enhance the effect of PTT. Interestingly, the broad spectrum of ROS scavenging ability of nanomedicines successfully attenuat PTT induced inflammation as well as regulate metastasis-related proteins through glycometabolism inhibition to reduce tumor cell metastasis. Moreover, the nanomedicines have negligible side effects and good clinical application prospect, which provides a valuable paradigm for the treatment of metastatic TNBC through glycometabolism interference, anti-inflammation, starvation and photothermal synergistic therapy.