This study presents new seismic imaging of the Andean subduction zone through P-wave hybrid finite-frequency and ray-theoretical tomography. We measured both differential and absolute traveltimes using broadband seismic waveforms from stations in an array of ocean-bottom seismographs near the Chile Triple Junction (CTJ) and stations within 30° from the array. These data were combined with the global traveltime dataset to obtain a global P-wave velocity structure with a focus on central to southern South America. The new tomographic image showed the Nazca slab geometry as a continuous fast anomaly, which is consistent with seismic activity and prior slab models. Furthermore, two notable structures were observed: a broad extension of the fast anomaly beneath the Nazca slab at 26–35° S and a slow anomaly east of the CTJ. The checkerboard resolution and recovery tests confirmed the reliability of these large-scale features. The fast anomaly, isolated from the Nazca slab, was interpreted as a relic Nazca slab segment based on its strong amplitude and spatial coincidence with the current Pampean and past Payenia flat slab segments. The slow anomaly near the CTJ was consistent with the previously inferred extent of the Patagonian slab window. Moreover, the active adakitic volcanoes are aligned with the southern edge of the anomaly, and the plateau basalts are located within the anomaly. Our model showed that the slow anomaly extended to a depth of up to 250 km, suggesting a depth limit that the asthenospheric window can influence.