Partial migration is a phenomenon where migratory and resident individuals of the same species co-exist within a population, and has been linked to both intrinsic (e.g., genetic) as well as environmental factors. Here we investigated the genomic architecture of partial migration in the Common blackbird, a songbird that comprises resident populations in the southern distribution range, partial migratory populations in central Europe and exclusively migratory populations in northern and eastern Europe. We generated whole-genome sequencing data for 60 individuals across the species’ distribution range, including resident populations (Spain and France), obligate migrants (Russia), and a partial migratory population with equal numbers of migratory and resident individuals in Germany. We estimated genetic differentiation (FST) of single-nucleotide variants (SNVs) in 2.5 kb windows between all possible population and migratory phenotype combinations, and focused our characterization on birds from the partial migratory population in Germany that have been individually phenotyped with radio-telemetry tracking. Despite overall low differentiation within the partial migratory German population, we identified several outlier regions with elevated differentiation on four distinct chromosomes. The region with the highest relative and absolute differentiation was located on chromosome 9, overlapping PER2, which has previously been shown to be involved in the control of the circadian rhythm across vertebrates. While this region showed high levels of differentiation, no fixed variant could be identified, supporting the notion that a complex phenotype such as migratory behavior is likely controlled by a large number of genetic loci.

Aude Caizergues

and 6 more

Identifying the molecular mechanisms involved in rapid adaptation to novel environments and determining their predictability, are central questions in evolutionary biology and pressing issues due to rapid global changes. Complementary to genetic responses to selection, faster epigenetic variations such as modifications of DNA methylation may play a substantial role in rapid adaptation. In the context of rampant urbanization, joint examinations of genomic and epigenomic mechanisms are still lacking. Here, we investigated genomic (SNP) and epigenomic (CpG methylation) responses to urban life in a passerine bird, the Great tit (Parus major). To test whether urban evolution is predictable (i.e parallel) or involves mostly non-parallel molecular processes among cities, we analysed both SNP and CpG methylation variations across three distinct pairs of city and forest Great tit populations in Europe. Our analyses reveal a polygenic response to urban life, with both many genes putatively under weak divergent selection and multiple differentially methylated regions (DMRs) between forest and city great tits. DMRs mainly overlapped transcription start sites and promotor regions, suggesting their importance in modulating gene expression. Both genomic and epigenomic outliers were found in genomic regions enriched for genes with biological functions related to the nervous system, immunity, or behavioural, hormonal and stress responses. Interestingly, comparisons across the three pairs of city-forest populations suggested little parallelism in both genetic and epigenetic responses. Our results confirm, at both the genetic and epigenetic levels, hypotheses of polygenic and largely non-parallel mechanisms of rapid adaptation in novel environments such as urbanized areas.