A key uncertainty in Aerosol-cloud interactions is the cloud liquid water path (LWP) response to increased aerosols (λ). LWP can either increase due to precipitation suppression or decrease due to entrainment-drying. Previous research suggests that precipitation suppression dominates in thick clouds, while entrainment-drying prevails in thin clouds. The time scales of the two competing effects are vastly different, requiring temporally resolved observations. We analyze 3-day Lagrangian trajectories of stratocumulus clouds over the southeast Pacific using geostationary data. We find that clouds with a LWP exceeding 200 g m-2 exhibit a positive response, while clouds with lower LWP show a negative response. We observe a significant diurnal cycle in λ, indicating a more strongly negative daytime adjustment driven by entrainment-drying. In contrast, at night, precipitation suppression can occasionally fully counteract the entrainment-drying mechanism. The time-integrated adjustment appears weaker than previously suggested in studies that do not account for the diurnal cycle.