Pablo Fernández

and 6 more

The Northwest Tropical Atlantic (NWTA) is a region with complex surface ocean circulation. The most prominent feature is the North Brazil Current (NBC) and its retroflection at 8ºN that leads to the formation of numerous mesoscale eddies known as NBC rings. The NWTA also receives the outflow of the Amazon River, generating freshwater plumes that can extend up to 100,000 km2. These two processes affect the spatial variability of the region’s surface latent heat flux (LHF). First, the presence of surface freshwater modifies the vertical stratification of the ocean limiting the amount of heat that can be released to the atmosphere. Second, they create a highly heterogeneous mesoscale sea-surface temperature (SST) field that directly influences near-surface atmospheric circulation. These effects are illustrated byd from the ElUcidating the RolE of Cloud-Circulation Coupling in ClimAte - Ocean Atmosphere (EUREC4A-OA) and Atlantic Tradewind Ocean-Atmosphere Interaction Campaign (ATOMIC) experiments, satellite and reanalysis data. We decompose the LHF budget into several terms controlled by different atmospheric and oceanic processes to identify the mechanisms leading to LHF changes. We find LHF variations of up to 160 W m2, of which 100 W m2 are associated with wind speed changes and 40 W m2 with SST variations. Surface currents or stratification-change associated heat release remain as second-order contributions with LHF variations of less than 10 W m2 each. Although this study is limited by the paucity of collocated observations, it highlights the importance of considering these three components to properly characterize LHF variability at different spatial scales.

Mengyang Zhou

and 5 more

We examined the nitrogen (N) biogeochemistry of adjacent cyclonic and anticyclonic eddies near Hawai’i in the North Pacific Subtropical Gyre (NPSG) and explored mechanisms that may sustain productivity in the cyclone after the initial intensification stage. The top of the nutricline was uplifted into the euphotic zone in the cyclone and depressed in the anticyclone. Subsurface nutrient concentrations and apparent oxygen utilization at the cyclone’s inner periphery were higher than expected from isopycnal displacement, suggesting that shallow remineralization of organic material generated excess nutrients in the subsurface. The excess nutrients may provide a supply of subsurface nutrients to sustain productivity in maturing eddies. The shallow remineralization also raises questions regarding the extent to which cyclonic eddies promote deep carbon sequestration in subtropical gyres such as the NPSG. An upward increase in nitrate 15N/14N isotope ratios below the euphotic zone, indicative of partial nitrate assimilation, coincided with negative preformed nutrients – potentially signaling heterotrophic bacterial consumption of carbon-rich (nitrogen-poor) organic material. The 15N/14N of material collected in shallow sediment traps was significantly higher in the cyclone than the anticyclone and showed correspondence to the 15N/14N ratio of the nitrate supply, which is acutely sensitive to sea level anomaly in the region. A number of approaches were applied to estimate the contribution of N2 fixation to export production; results among approaches were inconsistent, which we attribute to non-steady state conditions during our observation period.