AUTHOREA
Log in
Sign Up
Browse Preprints
LOG IN
SIGN UP
Essential Site Maintenance
: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at
[email protected]
in case you face any issues.
Sylvia Haider
Professor at Leuphana University of Lüneburg
Lüneburg, Germany
Public Documents
1
Roadside disturbance promotes arbuscular mycorrhizal communities in mountain regions...
Jan Clavel
and 20 more
August 12, 2023
Aim: We aimed to assess the impact at the global level of physical anthropogenic disturbances on the dominant mycorrhizal types in ecosystems and how this mechanism can potentially lead to lasting plant community changes. Location: Globally distributed study regions Time Period: 2007-2018 Taxa studied: Plants and mycorrhizal fungi Methods: We used a database of coordinated plant community surveys following mountain roads from 894 plots in 11 mountain regions across the globe in combination with a database of mycorrhizal-plant associations in order to estimate the relative abundance of mycorrhizal types in natural and disturbed environments. Results: Our findings show that roadside disturbance promotes the cover of plants associated with arbuscular mycorrhizal (AM) fungi. This effect is especially strong in colder mountain environments and in mountain regions where plant communities are dominated by ectomycorrhizal (EcM) or ericoid-mycorrhizal (ErM) associations. Furthermore, non-native plant species, which we confirmed to be mostly AM plants, are more successful in environments dominated by AM associations. Main Conclusions: These biogeographical patterns suggest that changes in mycorrhizal types are a crucial factor in the worldwide impact of anthropogenic disturbances on mountain ecosystems by promoting AM-dominated systems and potentially weakening biotic resistance against non-native species invasion. Restoration efforts in mountain ecosystems will have to contend with changes in the fundamental make-up of EcM- and ErM plant communities induced by roadside disturbance.