Masaki Orimo

and 5 more

Many unknowns exist regarding the energy radiation processes of the inland low-frequency earthquakes (LFEs) often observed beneath volcanoes. To evaluate their energy radiation characteristics, we estimated the scaled energy for LFEs and regular earthquakes in and around the focal area of the 2008 Mw 6.9 Iwate-Miyagi earthquake. We computed the source spectra for regular earthquakes, deep LFEs, and shallow LFEs by correcting for the site and path effects from direct S-waves. We computed the radiated energy and seismic moments, and obtained the scaled energy (eR) for 1464 regular earthquakes, 169 deep LFEs, and 52 shallow LFEs. The eR for regular earthquakes is in the order of 10-5 to 10-4, typical for crustal earthquakes, and tends to become smaller near volcanoes and shallow LFEs. In contrast, eR is in the order of 10-7 and 10-6 for deep and shallow LFEs, respectively, one to three orders of magnitude smaller than that for regular earthquakes. This result suggests that LFEs are associated with a much lower stress drop and/or slower rupture and deformation rates than regular earthquakes. Although the energy magnitudes derived from radiated energy generally show good agreement with the local magnitudes for the three types of earthquakes, the moment and local magnitudes show a large discrepancy for the LFEs. This suggests that the local magnitude based only on the maximum amplitude of the observed seismic records may not provide good information on the static sizes of LFEs whose eR values are substantially different from those of regular earthquakes.