Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation, and apoptosis. miR-221 is also implicated in promoting neuronal survival against oxidative stress and in promoting neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of this study; 1) miR-221 protects against oxidative stress in 6-hydroxydopamine-induced PC12 cells; 2) miR-221 prevents Bax/caspase-3 signaling activation by stopping Bim; 3) miR-221 has moderate predictive power for PD; 4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; 5) miRNA-221, by manipulating the Akt signaling pathway, performs in controlling cell viability and apoptosis in PD. This review study suggests that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.