The spatiotemporal variability of latent heat flux (LE) and water vapor mixing ratio (rv) variability are not well understood due to the scale-dependent and nonlinear atmospheric energy balance responses to land surface heterogeneity. Airborne in situ and profiling Raman lidar measurements with the wavelet technique are utilized to investigate scale-dependent relationships among LE, vertical velocity (w) variance (s2w), and rv variance (s2wv) over a heterogeneous surface in the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign. Our findings reveal distinct scale distributions of LE, s2w, and s2wv at 100 m height, with a majority scale range of 120m-4km in LE, 32m-2km in s2w, and 200 m – 8 km in s2wv. The scales are classified into three scale ranges, the turbulent scale (8m–200m), large-eddy scale (200m–2km), and mesoscale (2 km–8km) to evaluate scale-resolved LE contributed by s2w and s2wv. In the large-eddy scale in Planetary Boundary Layer (PBL), 69-75% of total LE comes from 31-51% of the total sw and 39-59% of the total s2wv. Variations exist in LE, s2w, and s2wv, with a range of 1.7-11.1% of total values in monthly-mean variation, and 0.6–7.8% of total values in flight legs from July to September. These results confirm the dominant role of the large-eddy scale in the PBL in the vertical moisture transport from the surface to the PBL. This analysis complements published scale-dependent LE variations, which lack detailed scale-dependent vertical velocity and moisture information.