Accurate particle size distribution (PSD) measurements of suspended particulate matter composed of flocs and aggregates are important to improve understanding of ecological and geomorphological processes, and for environmental engineering applications. PSD can be measured in situ (in the field) using a submersible sensor, or ex situ (in the laboratory) using samples. The methodological choice is often guided by logistical factors, and the differences in PSDs acquired by in situ and ex situ measurements are not acknowledged. In this study, a laser-diffraction instrument (LISST-200X) was used to compare in situ and ex situ PSD measurements. Samples measured ex situ were stored for three consecutive weeks and measured each week in a laboratory using different stirrer speeds. We observed that ex situ measurements display a higher D50 (median particle size) than in situ measurements of the same sample (up to 613% larger, 112% on average). Our experiments show that the difference between in situ and ex situ measurements can be explained by flocculation of the riverine sediments during the first week of storage. During the subsequent ex situ measurements, the stirring results in a significantly lower D50. Ex situ measurements are therefore unsuitable for flocculated suspended particulate matter. This study provides recommendations for optimizing PSD measurements by calculating the measurement times required to obtain robust PSD measurements (exceeding three minutes per sample), which are larger for field samples with coarser particles and wider PSDs.
Geometric characteristics of subaqueous bedforms, such as height, length and leeside angle, are crucial for determining hydraulic form roughness and interpreting sedimentary records. Traditionally, bedform existence and geometry predictors are primarily based on uniform, cohesionless sediments. However, mixtures of sand, silt and clay are common in deltaic, estuarine, and lowland river environments, where bedforms are ubiquitous. Therefore, we investigate the impact of fine sand and silt in sand-silt mixtures on bedform geometry, based on laboratory experiments conducted in a recirculating flume. We systematically varied the content of sand and silt for different discharges, and utilized a UB-Lab 2C (a type of acoustic Doppler velocimeter) to measure flow velocity profiles. The final bed geometry was captured using a line laser scanner. Our findings reveal that the response of bedforms to an altered fine sediment percentage is ambiguous, and depends on, among others, bimodality-driven bed mobility and sediment cohesiveness. When fine, non-cohesive material (fine sand or coarse silt) is mixed with the base material (medium sand), the hiding-exposure effect comes into play, resulting in enhanced mobility of the coarser material and leading to an increase in dune height and length. However, the addition of weakly-cohesive fine silt reduces the mobility, suppressing dune height and length. Finally, in the transition from dunes to upper stage plane bed, the bed becomes unstable and bedform heights vary over time. The composition of the bed material does not significantly impact the hydraulic roughness, but mainly affects roughness via the bed morphology, especially the leeside angle.
In deltas and estuaries throughout the world, a fluvial-to-tidal transition zone (FTTZ) exists where both the river discharge and the tidal motion drive the flow. It is unclear how bedform characteristics are impacted by changes in tidal flow strength, and how this is reflected in the hydraulic roughness. To understand bedform geometry and variability in the FTTZ and possible impacts on hydraulic roughness, we assess dune variability from multibeam bathymetric surveys, and we use a calibrated 2D hydrodynamic model (Delft3D-FM) of a sand-bedded lowland river (Fraser River, Canada). We focus on a period of low river discharge during which tidal impact is strong. We find that the fluvial-tidal to tidal regime change is not directly reflected in dune height, but local patterns of increasing and decreasing dune height are present. The calibrated model is able to predict local patterns of dune heights using tidally-averaged values of bed shear stress. However, the spatially variable dune morphology hampers local dune height predictions. The fluvial-to-tidal regime change is reflected in dune shape, where dunes have lower leeside angles and are more symmetrical in the tidal regime. Those tidal effects do not significantly impact the reach-scale roughness, and predicted dune roughness using dune height and length is similar to the dune roughness inferred from model calibration. Hydraulic model performance with a calibrated, constant roughness is not improved by implementing dune-derived bed roughness. Instead, large-scale river morphology may explain differences in model roughness and corresponding estimates from dune predictors.