The electromagnetic coupling between the Galilean satellites at Jupiter and the planetary ionosphere generates an auroral footprint, whose ultimate source is the relative velocity between the moons and the corotating magnetospheric plasma. The footprint can be detected in the infrared L band (3.3-3.6 microns) by the Jovian InfraRed Auroral Mapper (JIRAM) onboard the Juno spacecraft, which can observe the footprint position with high precision. Here, we report the JIRAM data acquired since August 27th 2016 until May 23rd 2022, corresponding to the first 42 orbits of Juno. The dataset is used to compute the average position of the footprint tracks of Io, Europa and Ganymede. The result of the present analysis can help to test the reliability of magnetic field models, to calibrate ground-based observations and to highlight episodes of variability in the footprint positions, which in turn can point out specific conditions of the Jovian magnetospheric environment.