Claire H Blaske

and 3 more

Lightning in the atmosphere of Venus is either ubiquitous, rare, or non-existent, depending on how one interprets diverse observations. Quantifying when and where, or even if lightning occurs would provide novel information about Venus’s atmospheric dynamics and chemistry. Lightning is also a potential risk to future missions, which could float in the cloud layers (~50–70 km above the surface) for up to an Earth-year. Over decades, spacecraft and ground-based telescopes have searched for lightning at Venus using many instruments, including magnetometers, radios, and optical cameras. Two optical surveys (from the Akatsuki orbiter and the 61-inch telescope on Mt. Bigelow, Arizona) observed several flashes at 777 nm (the unresolved triplet emission lines of excited atomic oxygen) that have been attributed to lightning. This conclusion is based, in part, on the statistical unlikelihood of so many meteors producing such energetic flashes, based in turn on the presumption that a low fraction (< 1%) of a meteor’s optical energy is emitted at 777 nm. We use observations of terrestrial meteors and analogue experiments to show that a much higher conversion factor (~5–10%) should be expected. Therefore, we calculate that smaller, more numerous meteors could have caused the observed flashes. Lightning is likely too rare to pose a hazard to missions that pass through or dwell in the clouds of Venus. Likewise, small meteors burn up at altitudes of ~100 km, roughly twice as high above the surface as the clouds, and also would not pose a hazard.

Marc Neveu

and 4 more

We investigate how variations in a planet’s size and the chemical (mineral) composition of its upper mantle and surface affect processes involved in the carbonate-silicate cycle, which is thought to have regulated the composition of Earth’s atmosphere and its surface temperature over geologic time. We present models of geophysical and geochemical controls on these processes: outgassing, continental weathering, and seafloor weathering, and analyze sensitivities to planet size and composition. For Earth-like compositions, outgassing is maximized for planets of Earth’s size. Smaller planets convect less vigorously; higher pressures inside larger planets hinder melting. For more felsic mantles, smaller planets (0.5-0.75 Earth mass) outgas more, whereas more mafic planets follow the size trend of Earth’s composition. Planet size and composition can affect outgassing by two orders of magnitude, with variability driven by mass in the first 2.5 Gyr after formation and by composition past that time. In contrast, simulations spanning the diversity of surface compositions encountered in the inner solar system indicate that continental weathering fluxes are about as sensitive to surface composition or the patchiness of land as they are to surface temperature, with fluxes within a factor of five of Earth’s. Seafloor weathering appears more sensitive to uncertainties in tectonic regime (occurrence, speed, and size of plates) than to seafloor composition. These results form a basis to interpret calculations of geological surface carbon fluxes to track atmospheric compositions, through time, of lifeless exo-Earths, providing a baseline against which the effect of biological activity may be distinguished with telescopic observations.