Convergent coastal-plain estuaries have been shortened by dam-like structures worldwide. We used 31 long-term water level stations and a semi-analytical tide model to investigate the influence of a dam and landward-funneling on tides and storm surge propagation in the greater Charleston Harbor region, South Carolina, where three rivers meet: the Ashley, Cooper, and Wando. Our analysis shows that the principle tidal harmonic (M2), storm surge, and long-period setup-setdown (~4–10 days) propagate as long waves with the greatest amplification and celerity observed in the M2 wave. All waves attenuate in landward regions, but, as they approach the dam on the Cooper River, a frequency dependent response in amplitude and phase progression occurs. Dam-induced amplification scales with wave frequency, causing the greatest amplification in M2 overtides. Model results show that funneling and the presence of a dam amplify tidal waves through partial and full reflection, respectively. The different phase progression of these reflected waves, however, can ultimately reduce the total wave amplification. We use a friction-convergence parameter space to demonstrate how amplification is largest for partial reflection, when funneling and wave periods are not extreme (often the case of dominant tides), and for full reflection, when funneling and/or wave periods are small. The analysis also shows that in the case of long period events (>day), such as storm surges, dams may attenuate the wave in funneling estuaries. However, dams may amplify the most intense storm surges (short, high) more than funneling with unexpected consequence that can greatly increase flood exposure.

Yannik Muche

and 4 more

River plumes play an essential role in the transport of terrestrially derived materials (like nutrients, sediments, pollutants, etc.) into the coastal ocean. Quantifying the cross-shore transport in river plumes can help to better understand the contribution of river-borne substances to marine biogeochemical cycles and to parameterize these processes in global ocean models which are usually too coarse to resolve individual rivers. It is known that besides external factors (like runoff, latitude, wind, and tides), also internal estuarine processes like salt mixing affect the exchange flow between an estuary and the coastal ocean. A theoretical framework to separate the plume and the estuary mixing in isohaline coordinates is presented. An idealized coastal ocean model setup resolving the whole plume-estuary continuum is used to validate the theoretical relation and to study the link between the estuarine pre-conditioning and the cross-shore export of river water under different forcing scenarios. It is found that the most effective cross-shore transport of river water happens under moderately upwelling favorable wind conditions and weak tidal forcing. This scenario is characterized by relatively small estuarine mixing, strong stratification, and little interaction between the surface and bottom boundary layers such that a thin layer of buoyant river water can extend far into the ocean. We conclude that reduced estuarine mixing is indicative of an enhanced accumulation of fresh water near the shore, but is not directly related to the cross-shore transport in river plumes.