Greig Paterson

and 5 more

Magnetic hysteresis measurements are routinely made in the Earth and planetary sciences to identify geologically meaningful  magnetic recorders, and to study variations in present and past environments. Interpreting magnetic hysteresis data in terms of domain state (particle size)  and paleomagnetic stability are major motivations behind undertaking these measurements, but the interpretations remain  fraught with challenges and ambiguities.To shed new light on these ambiguities, we have undertaken a systematic micromagnetic study to quantify the magnetic hysteresis behavior of room-temperature magnetite as a function of particle size (50-195 nm; equivalent spherical volume diameter) and shape (oblate, prolate and equant);our models span uniformly magnetized single domain (SD) to non-uniformly magnetized single vortex (SV) states.Within our models the reduced magnetization  marks a clear boundary between SD (≥0.5) and SV (<0.5) magnetite.We further identify particle sizes and shapes with unexpectedly low coercivity and coercivity of remanence. These low coercivity regions correspond to magnetite particles that typically have multiple possible magnetic domain states, which has been previously linked to a zone of unstable magnetic recorders.Of all hysteresis parameters investigated, transient hysteresis is most sensitive to particles that exhibit such domain state multiplicity, leading us to suggest that transient behavior be more routinely measured during rock magnetic investigations.

Brendan J Cych

and 4 more

The minerals carrying the magnetic remanence in geological samples are commonly a solid solution series of iron-titanium spinels known as titanomagnetites. Despite the range of compositions within this series, micromagnetic studies that characterize the magnetic domain structures present in these minerals have typically focused on magnetite. No studies systematically comparing the domain-states present in titanomagnetites have been undertaken since the discovery of the single vortex (SV) structure and the advent of modern micromagnetism. The magnetic properties of the titanomagnetite series are known to vary with composition, which may influence the domain states present in these minerals, and therefore the magnetic stability of the samples bearing them. We present results from micromagnetic simulations of titanomagnetite ellipsoids of varying shape and composition to find the size ranges of the single domain (SD) and SV structures. These size ranges overlap, allowing for regions where the SD and SV structures are both available. These regions are of interest as they may lead to magnetic instability and “pTRM tails’ in paleointensity experiments. We find that although this SD+SV zone occupies a narrow range of sizes for equidimensional magnetite, it is widest for intermediate (TM30-40) titanomagnetite compositions, and increases for both oblate and prolate particles, with some compositions and sizes having an SD+SV zone up to 100s of nm wide. Our results help to explain the prevalence of pTRM tail-like behavior in paleointensity experiments. They also highlight regions of particles with unusual domain states to target for further investigation into the definitive mechanism behind paleointensity failure.