Inbar Vaknin

and 3 more

Pockmarks are morphological depressions commonly observed in ocean and lake floors. Pockmarks form by fluid (typically gas) seepage thorough a sealing sedimentary layer, deforming and breaching the layer. The seepage-induced sediment deformation mechanisms, and their links to the resulting pockmarks morphology, are not well understood. To bridge this gap, we conduct laboratory experiments in which gas seeps through a granular (sand) reservoir, overlaid by a (clay) seal, both submerged under water. We find that gas rises through the reservoir and accumulates at the seal base. Once sufficient gas over-pressure is achieved, gas deforms the seal, and finally escapes via either: (i) doming of the seal followed by dome breaching via fracturing; (ii) brittle faulting, delineating a plug. The gas lifts the plug and seeps through the bounding faults; or (iii) plastic deformation by bubbles ascending through the seal. The preferred mechanism is found to depend on the seal thickness and stiffness: in stiff seals, a transition from doming and fracturing to brittle faulting occurs as the thickness increases, whereas bubbles rise is preferred in the most compliant, thickest seals. Seepage can also occur by mixed modes, such as bubbles rising in faults. Repeated seepage events suspend the sediment at the surface and create pockmarks. We present a quantitative analysis that explains the tendency for the various modes of deformation observed experimentally. Finally, we connect simple theoretical arguments with field observations, highlighting similarities and differences that bound the applicability of laboratory experiments to natural pockmarks.

Fabian Barras

and 3 more

The question “what arrests an earthquake rupture?” sits at the heart of any potential prediction of earthquake magnitude. Here, we use a one-dimensional, thin-elastic-strip, minimal model, to illuminate the basic physical parameters that control the arrest of large ruptures. The generic formulation of the model allows for wrapping various earthquake arrest scenarios into the variations of two dimensionless variables $\bar \tau_k$ (initial pre-stress on the fault) and $\bar d_c$ (fracture energy), valid for both in-plane and antiplane shear loading. Our continuum model is equivalent to the standard Burridge-Knopoff model, with an added characteristic length scale, $H$, that corresponds to either the thickness of the damage zone for strike-slip faults or to the thickness of the downward moving plate for subduction settings. We simulate the propagation and arrest of frictional ruptures and derive closed-form expressions to predict rupture arrest under different conditions. Our generic model illuminates the different energy budget that mediates crack- and pulse-like rupture propagation and arrest. It provides additional predictions such as generic stable pulse-like rupture solutions, stress drop independence of the rupture size, the existence of back-propagating fronts, and predicts that asymmetric slip profiles arise under certain pre-stress conditions. These diverse features occur also in natural earthquakes, and the fact that they can all be predicted by a single minimal framework is encouraging and pave the way for future developments of this model.