Shen Liang

and 5 more

In recent decades, with the placement of LiDAR remote sensing instruments in orbit, we now have global coverage of the bare-ground elevation on the Earth, Mars and beyond. Encoded in such planetary LiDAR data are interesting landscape features that promise to further our knowledge of planetary topography. However, discovery of such features entails 3 major challenges: 1) massive data; 2) the need for local multi-scale features; 3) sensitivity to interfering factors. To address these challenges, we propose FARMYARD, a generic pipeline for \underline{F}e\underline{a}ture Discove\underline{r}y Fro\underline{m} Planetar\underline{y} LiD\underline{AR} \underline{D}ata Data. To our knowledge, this is the first time such a pipeline has been proposed, which provides a brand new methodology for comparative studies of planetary topography. Specifically, drawing on the parallel computing power of the Graphics Processing Unit (GPU), we propose a novel pseudo-on-pass sweep (POPS) framework for fast and memory-efficient feature extraction for massive planetary LiDAR data, a two-level division scheme for local regions with support for multi-scale features, and a Domain-Shifted Partition (DSP) scheme for feature evaluation that is robust against interfering factors. To showcase the utility of our FARMYARD pipeline, we deploy it to a real-world research project, which seeks to find topographical signatures of life by discovering features that can potentially distinguish between the Earth and alien worlds with no known life activity. We also highlight the efficiency of our POPS framework with experiments on both synthetic and real data, which can be thousands of times faster than its CPU-based counterpart, including a multi-core parallel solution.

John-Robert Scholz

and 35 more

The instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three short-period seismic sensors is installed on the surface on Mars as part of NASA’s InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient one-sided pulses often accompanied by high-frequency spikes. These pulses, which we term “glitches”, can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEIS-internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS’ raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars’ internal structure should benefit from deglitched seismic data.