Emilie Macherel

and 3 more

Diapirism is crucial for heat and mass transfer in many geodynamic processes. Understanding diapir ascent velocity is vital for assessing its significance in various geodynamic settings. Although analytical estimates exist for ascent velocities of diapirs in power-law viscous, stress weakening fluids, they lack validation through 3D numerical calculations. Here, we improve these estimates by incorporating combined linear and power-law viscous flow and validate them using 3D numerical calculations. We focus on a weak, buoyant sphere in a stress weakening fluid subjected to far-field horizontal simple shear. The ascent velocity depends on two stress ratios: (1) the ratio of buoyancy stress to characteristic stress, controlling the transition from linear to power-law viscous flow, and (2) the ratio of regional stress associated with far-field shearing to characteristic stress. Comparing analytical estimates with numerical calculations, we find analytical estimates are accurate within a factor of two. However, discrepancies arise due to the analytical assumption that deviatoric stresses around the diapir are comparable to buoyancy stresses. Numerical results reveal significantly smaller deviatoric stresses. As deviatoric stresses govern stress-dependent, power-law, viscosity analytical estimates tend to overestimate stress weakening. We introduce a shape factor to improve accuracy. Additionally, we determine characteristic stresses for representative mantle and lower crustal flow laws and discuss practical implications in natural diapirism, such as sediment diapirs in subduction zones, magmatic plutons or exhumation of ultra-high-pressure rocks. Our study enhances understanding of diapir ascent velocities and associated stress conditions, contributing to a thorough comprehension of diapiric processes in geology.
Serpentinite subduction and associated dehydration vein formation are important for subduction zone dynamics and water cycling. Field observations suggest that en échelon olivine veins in serpentinite mylonites formed by dehydration during simultaneous shearing of serpentinite. Here, we test a hypothesis of shear-driven formation of dehydration veins with a two-dimensional hydro-mechanical-chemical numerical model. We consider the reaction antigorite + brucite = forsterite + water. Shearing is viscous and the shear viscosity decreases with increasing porosity. Total and fluid pressures are initially homogeneous and in the serpentinite stability field. Initial perturbations in porosity, and hence viscosity, cause fluid pressure perturbations during simple shearing. Dehydration nucleates where fluid pressure decreases locally below the thermodynamic pressure defining the reaction boundary. During shearing, dehydration veins grow in direction parallel to the maximum principal stress and serpentinite transforms into olivine inside the veins. Simulations show that the relation between compaction length and porosity as well as the ambient pressure have a strong impact on vein formation, while the orientation of the initial porosity perturbation and a pressure-insensitive yield stress have a minor impact. Porosity production associated with dehydration is controlled by three mechanisms: solid volumetric deformation, solid density variation and reactive mass transfer. Vein formation is self-limiting and slows down due to fluid flow decreasing fluid pressure gradients. We discuss applications to natural olivine veins as well as implications for slow slip and tremor, transient weakening, anisotropy generation and the formation of shear-driven high-porosity bands in the absence of a dehydration reaction.
Serpentinite subduction and the associated formation of dehydration veins is important for subduction zone dynamics and water cycling. Field observations suggest that en-échelon olivine veins in serpentinite mylonites formed by dehydration during simultaneous shearing of ductile serpentinite. Here, we test a hypothesis of shear-driven formation of dehydration veins with a two-dimensional hydro-mechanical-chemical numerical model. We consider the reaction antigorite + brucite = forsterite + water. Shearing is viscous and the shear viscosity decreases exponentially with porosity. The total and fluid pressures are initially homogeneous and in the antigorite stability field. Initial perturbations in porosity, and hence viscosity, cause fluid pressure perturbations. Dehydration nucleates where the fluid pressure decreases locally below the thermodynamic pressure defining the reaction boundary. Dehydration veins grow during progressive simple-shearing in a direction parallel to the maximum principal stress, without involving fracturing. The porosity evolution associated with dehydration reactions is controlled to approximately equal parts by three mechanisms: volumetric deformation, solid density variation and reactive mass transfer. The temporal evolution of dehydration veins is controlled by three characteristic time scales for shearing, mineral-reaction kinetics and fluid-pressure diffusion. The modelled vein formation is self-limiting and slows down due to fluid flow decreasing fluid pressure gradients. Mineral-reaction kinetics must be significantly faster than fluid-pressure diffusion to generate forsterite during vein formation. The self-limiting feature can explain the natural observation of many, small olivine veins and the absence of few, large veins. We further discuss implications for transient weakening during metamorphism and episodic tremor and slow-slip in subduction zones.