Andrew G Twelves

and 5 more

The Amundsen Sea in West Antarctica features rapidly thinning ice shelves and large, seasonally recurring polynyas. Within these polynyas, sizable spring phytoplankton blooms occur. Although considerable effort has gone into characterising heat fluxes between the Amundsen Sea, its associated ice shelves, and the overlying atmosphere, the effect of the phytoplankton blooms on the distribution of heat remains poorly understood. In this modelling study, we implement a feedback from biogeochemistry onto physics into MITgcm-BLING and use it to show, for the first time, that high levels of chlorophyll – concentrated in the Amundsen Sea Polynya and the Pine Island Polynya – accelerate springtime surface warming in polynyas through enhanced absorption of solar radiation. The warm midsummer anomaly (on average between +0.2°C and +0.3C°) at the surface is quickly dissipated to the atmosphere, by small increases in latent and longwave heat loss as well as a substantial (17.5%) increase in sensible heat loss from open water areas. The summertime warm anomaly also reduces the summertime sea ice volume, and stimulates enhanced seasonal melting near the fronts of ice shelves. However larger effects derive from the accompanying cold anomaly, caused by shading of deeper waters, which persists throughout the year and affects a decrease in the volume of Circumpolar Deep Water on the continental shelf. This cooling ultimately leads to an increase in wintertime sea ice volume, and reduces basal melting of Amundsen Sea ice shelves by approximately 7% relative to the model scenario with no phytoplankton bloom.
In the West Antarctic Peninsula (WAP), complex interactions between the cryosphere, ocean and atmosphere produce an environment with large geographical, seasonal and interannual variability which is highly vulnerable to climate change. The seasonal sea ice cycle and its interactions with upper-ocean mixing play an important role in structuring this environment. Here we show that the relationship between sea ice and mixed layer depth (MLD) varies regionally between the WAP shelf and off-shelf regions. Using an MITgcm regional model of the WAP and Bellingshausen Sea for 1989-2018, we find that on the WAP shelf, high winter sea ice coverage is related to shallow spring mixed layers, whereas in a region offshore of the shelf, high winter sea ice coverage is related to deep spring mixed layers. The exact boundary between positive and negative correlations between winter sea ice concentration (SIC) and spring MLD varies decadally. Our results can be explained by a nonlinear relationship between SIC and momentum flux into the ocean, with a minor additional role for the timing of seasonal processes. Transport of sea ice across the model domain dampens this mechanism except in regions of very large sea ice export such as polynyas. With sea ice conditions projected to undergo large changes over the course of the century, understanding the relationship between sea ice and upper-ocean mixing in this unique and vulnerable location is crucial for understanding the wider impacts of climate change on biological productivity in the polar oceans.