Deep incised glacial valleys surrounded by high peaks form the modern topography of the Southern Patagonian Andes. Two Miocene plutonic complexes in the Andean retroarc, the cores of the Fitz Roy (49°S) and Torres del Paine (51°S) massifs, were emplaced at 16.7±0.3 Ma and 12.5±0.1 Ma, respectively. Subduction of ocean ridge segments initiated at 54°S, generating northward opening of an asthenospheric window with associated mantle upwelling and orogenic shortening since 16 Ma. Subsequently, the onset of major glaciations at 7 Ma caused drastic changes in the regional topographic evolution. To constrain the respective contributions of tectonic convergence, mantle upwelling and fluvio-glacial erosion to rock exhumation, we present inverse thermal modeling of a new dataset of zircon and apatite (U-Th)/He from the two massifs, complemented by apatite 4He/3He data for Torres del Paine. Our results show rapid rock exhumation recorded in the Fitz Roy massif between 10.5 and 9 Ma, which we ascribe to mantle upwelling and/or crustal shortening due to ridge subduction at 49°S. Both massifs record a pulse of rock exhumation between 6.5 and 4.5 Ma, which we interpret as the result of the onset of Patagonian glaciations. After a period of erosional quiescence during the Miocene/Pliocene transition, increased rock exhumation since 3-2 Ma to present day is interpreted as the result of alpine glacial valley carving promoted by reinforced glacial-interglacial cycles. This study demonstrates that along-strike thermochronological studies provide us with the means to assess the spatio-temporal variations in tectonic, mantle, and surface processes forcing on rock exhumation.

Paul A. Jarvis

and 6 more

The mixing and mingling of magmas of different compositions are important geological processes. They produce various distinctive textures and geochemical signals in both plutonic and volcanic rocks and have implications for eruption triggering. Both processes are widely studied, with prior work focusing on field and textural observations, geochemical analysis of samples, theoretical and numerical modelling, and experiments. However, despite the vast amount of existing literature, there remain numerous unresolved questions. In particular, how does the presence of crystals and exsolved volatiles control the dynamics of mixing and mingling? Furthermore, to what extent can this dependence be parameterised through the effect of crystallinity and vesicularity on bulk magma properties such as viscosity and density? In this contribution, we review the state of the art for models of mixing and mingling processes and how they have been informed by field, analytical, experimental and numerical investigations. We then show how analytical observations of mixed and mingled lavas from four volcanoes (Chaos Crags, Lassen Peak, Mt. Unzen and Soufrière Hills) have been used to infer a conceptual model for mixing and mingling dynamics in magma storage regions. Finally, we review recent advances in incorporating multi-phase effects in numerical modelling of mixing and mingling, and highlight the challenges associated with bringing together empirical conceptual models and theoretically-based numerical simulations.