NASA designated Reiner Gamma (RG) as the landing site for the first Payloads and Research Investigations on the Surface of the Moon (PRISM) delivery (dubbed PRISM-1a). Reiner Gamma is home to a magnetic anomaly, a region of magnetized crustal rocks. The RG magnetic anomaly is co-located with the type example of a class of irregular high-reflectance markings known as lunar swirls. RG is an ideal location to study how local magnetic fields change the interaction of an airless body with the solar wind, producing stand-off regions that are described as mini-magnetospheres. The Lunar Vertex mission, selected by NASA for PRISM-1a, has the following major goals: 1) Investigate the origin of lunar magnetic anomalies; 2) Determine the structure of the mini-magnetosphere that forms over the RG magnetic anomaly; 3) Investigate the origin of lunar swirls; and 4) Evaluate the importance of micrometeoroid bombardment vs. ion/electron exposure in the space weathering of silicate regolith. The mission goals will be accomplished by the following payload elements. The lander suite includes: The Vertex Camera Array (VCA), a set of fixed-mounted cameras. VCA images will be used to (a) survey landing site geology, and (b) perform photometric modeling to yield information on regolith characteristics. The Vector Magnetometer-Lander (VML) is a fluxgate magnetometer. VML will operate during descent and once on the surface to measure the in-situ magnetic field. Sophisticated gradiometry allows for separation of the natural field from that of the lander. The Magnetic Anomaly Plasma Spectrometer (MAPS) is a plasma analyzer that measures the energy, flux, and direction of ions and electrons. The lander will deploy a rover that conducts a traverse reaching ≥500 m distance, obtaining spatially distributed measurements at locations outside the zone disturbed by the lander rocket exhaust. The rover will carry two instruments: The Vector Magnetometer-Rover (VMR) is an array of miniature COTS magnetometers to measure the surface field. The Rover Multispectral Microscope (RMM) will collect images in the wavelength range ~0.34–1.0 um. RMM will reveal the composition, texture, and particle-size distribution of the regolith.