Pengxiang Hu

and 4 more

Pigmentary hematite carries important signals in paleomagnetic and paleoenvironmental studies. However, weak magnetism and the assumption that it has high magnetic coercivity prevents prevents routine identification of the size distribution of pigmentary hematite, especially for fine particle sizes. We present a strategy for estimating joint hematite particle volume and microcoercivity (f (V, Hk0)) distributions from low-temperature demagnetization curves and thermal fluctuation tomography (TFT) of pigmentary hematite in bulk samples of Triassic-Jurassic Inuyama red chert, Japan. The coercivity of the pigmentary hematite increases exponentially with decreasing temperature, following a modified Kneller’s law, where microcoercivity has a wide but approximately symmetric distribution in logarithmic space from ~1 tesla to tens of tesla. All of the red chert samples contain stable single domain (SSD) hematite with 35 - 160 nm diameter; a significant superparamagnetic (SP) hematite population with sizes down to several nanometers also occurs in Jurassic samples. The SP/SSD threshold size is estimated to be 8 - 18 nm in these samples. The fine particle size of the pigmentary hematite is evident in its low median unblocking temperature (194 °C to 529 °C) and, thus, this hematite may contribute to all four paleomagnetic components identified in published thermal magnetization studies of the Inuyama red chert. In this work, uniaxial anisotropy and magnetization switching via coherent rotation are assumed. Uniaxial anisotropy is often dominant in fine-grained hematite, although the dominant anisotropy type should be evaluated before using TFT. This approach is applicable to studies that require knowledge of coercivity and size distributions of hematite pigments.

Lisa Tauxe

and 6 more

The theory for recording of thermally blocked remanences predicts a quasi-linear relationship between low fields like the Earth’s in which rocks cool and acquire a magnetization. This serves as the foundation for estimating ancient magnetic field strengths. Addressing long-standing questions concerning Earth’s magnetic field require a global paleointensity dataset, but recovering the ancient field strength is complicated because the theory only pertains to uniformly magnetized particles. A key requirement of a paleointensity experiment is that a magnetization blocked at a given temperature should be unblocked by zero-field reheating to the same temperature. However, failure of this requirement occurs frequently and the causes and consequences of failure are poorly understood. Recent experiments demonstrate that the remanence in many samples typical of those used in paleointensity experiments is unstable, and exhibits an ”aging’ effect in which the unblocking temperature spectrum changes over only a few years resulting in non-ideal experimental behavior. While a fresh remanenence may conform to the requirement of equality of blocking and unblocking temperatures, aged remanences may not. Blocking temperature spectra can be unstable (fragile), which precludes reproduction of the conditions under which the original magnetization was acquired. This limits our ability to acquire accurate and precise ancient magnetic field strength estimates because differences between known and estimated fields can be significant (up to 10 μT) for individual specimens, with a low field bias. Fragility of unblocking temperature spectra appears to be related to grain size and may be related to features observed in first-order reversal curves.

Eelco J Rohling

and 7 more

Global ice volume (sea level) and deep-sea temperature are key measures of Earth’s climatic state. We synthesize evidence for multi-centennial to millennial ice-volume and deep-sea temperature variations over the past 40 million years, which encompass the early glaciation of Antarctica at ~34 million years ago (Ma), the end of the Middle Miocene Climate Optimum, and the descent into bipolar glaciation from ~3.4 Ma. We compare different sea-level and deep-water temperature reconstructions to build a resource for validating long-term numerical model-based approaches. We present: (a) a new template synthesis of ice-volume and deep-sea temperature variations for the past 5.3 million years; (b) an extended template for the interval between 5.3 and 40 Ma; and (c) a discussion of uncertainties and limitations. We highlight key issues associated with glacial state changes in the geological record from 40 Ma to present that require attention in further research. These include offsets between calibration-sensitive versus thermodynamically guided deep-sea paleothermometry proxy measurements; a conundrum related to the magnitudes of sea-level and deep-sea temperature change at the Eocene-Oligocene transition at 34 Ma; a discrepancy in deep-sea temperature levels during the Middle Miocene; and a hitherto unquantified non-linear reduction of glacial deep-sea temperatures through the past 3.4 million years toward a near-freezing deep-sea temperature asymptote, while sea level stepped down in a more uniform manner. Uncertainties in proxy-based reconstructions hinder further distinction of “reality” among reconstructions. It seems more promising to further narrow this using three-dimensional ice-sheet models with realistic ice-climate-ocean-topography-lithosphere coupling, as computational capacities improve.