Sarah Rosengard

and 6 more

The Amazon River mobilizes organic carbon across one of the world’s largest terrestrial carbon reservoirs. Quantifying the sources of particulate organic carbon (POC) to this flux is typically challenging in large systems like the Amazon River due to hydrodynamic sorting of sediments. Here, we analyze the composition of POC collected from multiple total suspended sediment (TSS) profiles in the mainstem at Óbidos, and surface samples from the Madeira, Solimões and Tapajós Rivers. As hypothesized, TSS and POC concentrations in the mainstem increased with depth and fit well to Rouse models for sediment sorting by grain size. Coupling these profiles to Acoustic Doppler Current Profiler discharge data, we estimate a large decrease in POC flux (from 540 to 370 kilograms per second) between the rising and falling stages of Amazon River mainstem. The C/N ratio, stable and radiocarbon signatures of bulk POC are less variable within the cross-section at Óbidos, and suggest that riverine POC in the Amazon River is predominantly soil-derived. However, smaller shifts in these compositional metrics with depth, including leaf wax n-alkanes and fatty acids, are consistent with the perspective that deeper and larger particles carry fresher, less degraded organic matter sources (i.e., vegetation debris) through the mainstem. Overall, our cross-sectional surveys at Óbidos highlight the importance of depth-specific sampling for estimating riverine export fluxes. At the same time, they imply that this approach to sampling is perhaps less essential with respect to characterizing the composition of POC sources exported by the river.

Sophie Hage

and 20 more

The delivery and burial of terrestrial particulate organic carbon (OC) in marine sediments is important to quantify, because this OC is a food resource for benthic communities, and if buried it may lower the concentrations of atmospheric CO2 over geologic timescales. Analysis of sediment cores has previously shown that fjords are hotspots for OC burial. Fjords can contain complex networks of submarine channels formed by seafloor sediment flows, called turbidity currents. However, the burial efficiency and distribution of OC by turbidity currents in river-fed fjords had not been investigated previously. Here, we determine OC distribution and burial efficiency across a turbidity current system within a fjord, in Bute Inlet (Canada). We show that 60 ± 10 % of the OC supplied by the two river sources, is buried across the fjord surficial (2 m) sediment. The sand-dominated submarine channel and its terminal lobe contain 63 ± 14 % of the annual terrestrial OC burial in the fjord. In contrast, the muddy overbank and distal flat basin settings contain the remaining 37 ± 14 %. OC in the channel, lobe and overbank exclusively comprises terrestrial OC sourced from rivers. When normalized by the fjord’s surface area, at least three times more terrestrial OC is buried in Bute Inlet, compared to the muddy parts of other fjords previously studied. Although the long-term (>100 year) preservation of this OC is still to be fully understood, turbidity currents in fjords appear to be efficient in storing OC supplied by rivers in their near-surface deposits.