loading page

Investigating zonal asymmetries in stratospheric ozone trends from satellite limb observations and a chemical transport model
  • +5
  • Carlo Arosio,
  • Martyn P. Chipperfield,
  • Sandip Dhomse,
  • Wuhu Feng,
  • Alexei Rozanov,
  • Mark Weber,
  • Xin Zhou,
  • John P Burrows
Carlo Arosio
University of Bremen - Institute of Environmental Physics

Corresponding Author:[email protected]

Author Profile
Martyn P. Chipperfield
University of Leeds
Author Profile
Sandip Dhomse
University of Leeds
Author Profile
Wuhu Feng
National Centre for Atmospheric Science
Author Profile
Alexei Rozanov
Instutute of Environmental Physics, University of Bremen
Author Profile
Mark Weber
University of Bremen FB1
Author Profile
Xin Zhou
School of Atmospheric Sciences, Chengdu University of Information Technology
Author Profile
John P Burrows
University of Bremen
Author Profile


This study investigates the origin of the zonal asymmetry in stratospheric ozone trends at northern high latitudes, identified in satellite limb observations over the past two decades. We use a merged dataset consisting of ozone profiles retrieved at the University of Bremen from SCIAMACHY and OMPS-LP measurements to derive ozone trends. We also use TOMCAT chemical transport model (CTM) simulations, forced by ERA5 reanalyses, to investigate the factors which determine the asymmetry observed in the long-term changes. By studying seasonally and longitudinally resolved observation-based ozone trends, we find, especially during spring, a well-pronounced asymmetry at polar latitudes, with values up to +6 % per decade over Greenland and -5 % per decade over western Russia. The control CTM simulation agrees well with these observed trends, whereas sensitivity simulations indicate that chemical mechanisms, involved in the production and removal of ozone, or their changes, are unlikely to explain the observed behaviour. The decomposition of TOMCAT ozone time series and of ERA5 geopotential height into the first two wavenumber components shows a clear correlation between the two variables in the middle stratosphere and demonstrates a weakening and a shift in the wavenumber-1 planetary wave activity over the past two decades. Finally, the analysis of the polar vortex position and strength points to a decadal oscillation with a reversal pattern at the beginning of the century, also found in the ozone trend asymmetry. This further stresses the link between changes in the polar vortex position and the identified ozone trend pattern.
05 Nov 2023Submitted to ESS Open Archive
08 Nov 2023Published in ESS Open Archive