Mark Schlutow

and 4 more

Arctic permafrost thaw holds the potential to drastically alter the Earth’s surface in Northern high latitudes. We utilize high-resolution Large Eddy Simulations to investigate the impact of the changing surfaces onto the neutrally stratified Atmospheric Boundary Layer (ABL). A stochastic surface model based on Gaussian Random Fields modeling typical permafrost landscapes is established in terms of two land cover classes: grass land and open water bodies, which exhibit different surface roughness length and surface sensible heat flux. A set of experiments is conducted where two parameters, the lake areal fraction and the surface correlation length, are varied to study the sensitivity of the boundary layer with respect to surface heterogeneity. Our key findings from the simulations are the following: The lake areal fraction has a substantial impact on the aggregated sensible heat flux at the blending height. The larger the lake areal fraction, the smaller the sensible heat flux. This result gives rise to a potential feedback mechanism. When the Arctic dries due to climate heating, the interaction with the ABL may accelerate permafrost thaw. Furthermore, the blending height shows significant dependency on the correlation length of the surface features. A longer surface correlation length causes an increased blending height. This finding is of relevance for land surface models concerned with Arctic permafrost as they usually do not consider a heterogeneity metric comparable to the surface correlation length.

Martijn Pallandt

and 6 more

Ecosystems at high latitudes are under increasing stress from climate change. To understand changes in carbon fluxes, in situ measurements from eddy covariance networks are needed. However, there are large spatiotemporal gaps in the high-latitude eddy covariance network. Here we used the relative extrapolation error index in machine learning-based upscaled gross primary production as a measure of network representativeness and as the basis for a network optimization. We show that the relative extrapolation error index has steadily decreased from 2001 to 2020, suggesting diminishing upscaling errors. In experiments where we limit site activity by either setting a maximum duration or by ending measurements at a fixed time those errors increase significantly, in some cases setting the network status back more than a decade. Our experiments also show that with equal site activity across different theoretical network setups, a more spread out design with shorter-term measurements functions better in terms of larger-scale representativeness than a network with fewer long-term towers. We developed a method to select optimized site additions for a network extension, which blends an objective modeling approach with expert knowledge. Using a case study in the Canadian Arctic we show several optimization scenarios and compare these to a random site selection among reasonable choices. This method greatly outperforms an unguided network extension and can compensate for suboptimal human choices. Overall, it is important to keep sites active and where possible make the extra investment to survey new strategic locations.

Fabrice Lacroix

and 7 more

Biogeochemical cycling in permafrost-affected ecosystems remains associated with large uncertainties, which could impact the Earth’s greenhouse gas budget and future climate mitigation policies. In particular, increased nutrient availability following permafrost thaw could perturb biogeochemical cycling in permafrost systems, an effect largely unexplored in global assessments. In this study, we enhance the terrestrial ecosystem model QUINCY, which fully couples carbon (C), nitrogen (N) and phosphorus (P) cycles in vegetation and soil, with processes relevant in high latitudes (e.g., soil freezing and snow dynamics). We use this enhanced model to investigate impacts of increased carbon and nutrient availability from permafrost thawing in comparison to other climate-induced effects and CO2 fertilization over 1960 to 2019 over a multitude of tundra sites. Our simulation results suggest that vegetation growth in high latitudes is acutely N-limited at our case study sites. Despite this, enhanced availability of nutrients in the deep active layer following permafrost thaw, simulated to be around 0.1 m on average since the 1960s, accounts for only 11 % of the total GPP increase averaged over all sites. Our analysis suggests that the decoupling of the timing of peak vegetative growth (week 27-29 of the year, corresponding to mid-to-late July) and maximum thaw depth (week 34-37, corresponding to mid-to-late August), lead to an incomplete plant use of newly available nutrients at the permafrost front. Due to resulting increased availability of N at the permafrost table, as well as alternating water saturation levels, increases in both nitrification and denitrification enhance N2O emissions in the simulations. Our model thus suggests a weak (5 mg N m-2 yr-1) but increasing source of N2O, which reaches trends of up to +1 mg N m-2 yr-1 per decade, locally, which is potentially of large importance for the global N2O budget.