We present a comprehensive study of the nightside aurora phenomenon on Mars, utilizing observations from EMUS onboard EMM. The oxygen emission at 130.4 nm is by far the brightest FUV auroral emission line observed at Mars. Our statistical analysis reveals geographic, solar zenith angle, local time, and seasonal dependencies of auroral occurrence. Higher occurrence of aurora is observed in regions of open magnetic topology, where crustal magnetic fields are either very weak or both strong and vertical. Aurora occurs more frequently closer to the terminator and is more likely on the dusk side than on the dawn side of the night hemisphere. A pronounced auroral feature appears close to midnight local times in the southern hemisphere, consistent with the spot of energetic electron fluxes previously identified in the MGS data. This auroral spot is more frequent after midnight than before. Additionally, some regions on Mars are "aurora voids" where essentially no aurora occurs. Aurora exhibits a seasonal dependence, with a major enhancement near perihelion. Non-crustal field aurora additionally shows a secondary enhancement near Ls 30°. This seasonal variability is a combination of the variability in ionospheric photoelectrons and thermospheric atomic oxygen abundance. Auroral occurrence also shows an increase with the rise of Solar Cycle 25. The brightest auroral pixels are observed during space weather events such as CMEs and SIRs. These observations not only shed light on where and when Martian aurora occurs, but also add to our understanding of Mars' magnetic environment and its interaction with the heliosphere.

Zachary Girazian

and 10 more

Discrete aurora at Mars, characterized by their small spatial scale and tendency to form near strong crustal magnetic fields, are emissions produced by particle precipitation into the Martian upper atmosphere. Since 2014, Mars Atmosphere and Volatile EvolutioN’s (MAVEN’s) Imaging Ultraviolet Spectrograph (IUVS) has obtained a large collection of nightside UV discrete aurora observations. Initial analysis of these observations has shown that, near the strong crustal field region (SCFR) in the southern hemisphere, the aurora detection frequency is highly sensitive to the interplanetary magnetic field (IMF) clock angle. However, the role of other solar wind properties in controlling the aurora detection frequency has not yet been determined. In this work, we use IUVS discrete aurora observations, and MAVEN solar wind observations, to determine how the discrete aurora detection frequency varies with solar wind dynamic pressure, IMF strength, and IMF cone angle. We find that, outside of the SCFR, the detection frequency is relatively insensitive to the IMF orientation, but significantly increases with solar wind dynamic pressure and moderately increases with IMF strength. Interestingly, the auroral emission brightness outside the SCFR is insensitive to the dynamic pressure. Inside the SCFR, the detection frequency is moderately dependent on the dynamic pressure and is much more sensitive to the IMF clock and cone angles. In the SCFR, aurora are unlikely to occur when the IMF points near the radial or anti-radial directions. Together, these results provide the first comprehensive characterization of how upstream solar wind conditions affect the formation of discrete aurora at Mars.