Hasan Ahmed

and 2 more

Detection and monitoring of tropical forest degradation is crucial to climate change mitigation and biodiversity conservation efforts. Several algorithms have been recently developed to monitor forest degradation and disturbance using remote sensing. However, these algorithms differ in local predictions due to the variation in the biogeophysical parameters used as degradation proxies. It is crucial to assess their relative performance and shortcomings in order to develop a clear understanding of the conditions under which each algorithm will detect a disturbance. In this study, we used GEDI lidar data on forest structure to examine the sensitivity of widely used forest disturbance and degradation products in a frontier tropical forest landscape in the Peruvian Amazon. We compared a leading spectral-based degradation algorithm (Continuous Degradation Detection (CODED)) with a radar-based algorithm (ALOS-2 PalSAR-2 based Radar Forest degradation Index (RFDI)). Given the sensitivity of radar to canopy cover and volume, we hypothesized that a single radar observation may detect degradation better than a long spectral time series. We first identified stable forests for reference structure in two ways: using disturbance stratification data from CODED, and using Peruvian protected areas. Our analysis showed that CODED performed below expectations in detecting forest degradation, often including patches that were regrowing after clear-felling in its “degraded” class. As CODED classified spectral changes over time rather than capturing structural variability, it classified 82% of palm plantations area as “degraded.” CODED also failed to detect degradation in forest areas that were likely partially disturbed (i.e., with low height and high cover). By contrast, the PalSAR-2 RFDI showed a significant relationship with forest height (detecting low height in degraded forests), although its predictive ability was limited due to high variability and signal saturation. Our study supports the conclusion that radar-based observation can detect forest degradation that the time series observation failed to detect. Given the limited correspondence between radar and spectral algorithms, we suggest that integrations of spectral and radar data may be beneficial for mapping forest degradation.

Temilola Fatoyinbo

and 30 more

In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30000 km2 of UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1 hectare sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform Lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications by the greater scientific community.