Abigail S. L. Lewis

and 8 more

Water level drawdowns are increasingly common in lakes and reservoirs worldwide as a result of both climate change and water management. Drawdowns can have direct effects on physical properties of a waterbody (e.g., by altering stratification and light dynamics), which can interact to modify the waterbody’s biology and chemistry. However, the ecosystem-level effects of drawdown remain poorly characterized in small, thermally-stratified reservoirs, which are common in many regions of the world. Here, we intensively monitored a small eutrophic reservoir for two years, including before, during, and after a month-long drawdown that reduced total reservoir volume by 36%. During drawdown, stratification strength (maximum buoyancy frequency) and surface phosphate concentrations both increased, contributing to a substantial surface phytoplankton bloom. The peak in phytoplankton biomass was followed by cascading changes in surface water chemistry associated with bloom degradation, with sequential peaks in dissolved organic carbon, dissolved carbon dioxide, and ammonium concentrations that were up to an order of magnitude higher than the previous year. Dissolved oxygen concentrations substantially decreased in the surface waters during drawdown (to 41% saturation), which was associated with increased total iron and manganese concentrations. Combined, our results illustrate how changes in water level can have cascading effects on coupled physical, chemical, and biological processes. As climate change and water management continue to increase the frequency of drawdowns in lakes worldwide, our results highlight the importance of characterizing how water level variability can alter complex in-lake ecosystem processes, thereby affecting water quality.

Dexter W Howard

and 5 more

Temperate reservoirs and lakes worldwide are experiencing decreases in ice cover, which will likely alter the net balance of gross primary production (GPP) and respiration (R) in these ecosystems. However, most metabolism studies to date have focused on summer dynamics, thereby excluding winter dynamics from annual metabolism budgets. To address this gap, we analyzed six years of year-round high-frequency dissolved oxygen data to estimate daily rates of net ecosystem production (NEP), GPP, and R in a eutrophic, dimictic reservoir that has intermittent ice cover. Over six years, the reservoir exhibited slight heterotrophy during both summer and winter. We found winter and summer metabolism rates to be similar: summer NEP had a median rate of -0.06 mg O2 L-1 day-1 (range: -15.86 to 3.20 mg O2 L-1 day-1), while median winter NEP was -0.02 mg O2 L-1 day-1 (range: -8.19 to 0.53 mg O2 L-1 day-1). Despite large differences in the duration of ice cover among years, there were minimal differences in NEP among winters. Overall, the inclusion of winter data had a limited effect on annual metabolism estimates, likely due to short winter periods in this reservoir (ice durations 0–35 days) relative to higher-latitude lakes. Our work reveals a smaller difference between winter and summer NEP than in lakes with continuous ice cover. Ultimately, our work underscores the importance of studying full-year metabolism dynamics in a range of aquatic ecosystems to help anticipate the effects of declining ice cover across lakes worldwide.

Mary E Lofton

and 3 more

Near-term freshwater forecasts, defined as sub-daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near-term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past five years. We found that freshwater forecasting is currently dominated by near-term forecasts of water quantity and that near-term water quality forecasts are fewer in number and in early stages of development (i.e., non-operational), despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed, and that near-term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events five days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts necessitates substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near-term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management.

Mary Lofton

and 7 more

1. Freshwater phytoplankton communities are currently experiencing multiple global change stressors, including increasing frequency and intensity of storms. An important mechanism by which storms affect lake and reservoir phytoplankton is by altering the water column’s thermal structure (e.g., changes to thermocline depth). However, little is known about the effects of intermittent thermocline deepening on phytoplankton community vertical distribution and composition or the consistency of phytoplankton responses to varying frequency of these disturbances over multiple years. 2. We conducted whole-ecosystem thermocline deepening manipulations in a small reservoir. We used an epilimnetic mixing system to experimentally deepen the thermocline in two summers, simulating potential responses to storms, and did not manipulate thermocline depth in two succeeding summers. We collected weekly depth profiles of water temperature, light, nutrients, and phytoplankton biomass as well as discrete samples to assess phytoplankton community composition. We then used time-series analysis and multivariate ordination to assess the effects of intermittent thermocline deepening due to both our experimental manipulations and naturally-occurring storms on phytoplankton community structure. 3. We observed inter-annual and intra-annual variability in phytoplankton community response to thermocline deepening. We found that peak phytoplankton biomass was significantly deeper in years with a higher frequency of thermocline deepening events (i.e., years with both manipulations and natural storms) due to weaker thermal stratification and deeper depth distributions of soluble reactive phosphorus. Furthermore, we found that the depth of peak phytoplankton biomass was linked to phytoplankton community composition, with certain taxa being associated with deep or shallow biomass peaks, often according to functional traits such as optimal growth temperature, mixotrophy, and low-light tolerance. 4. Our results demonstrate that abrupt thermocline deepening due to water column mixing affects both phytoplankton depth distribution and community structure via alteration of physical and chemical gradients. In addition, our work supports previous research that phytoplankton depth distribution and community composition interact at inter-annual and intra-annual timescales. 5. Variability in the inter-annual and intra-annual responses of phytoplankton to abrupt thermocline deepening indicates that antecedent conditions and the seasonal timing of surface water mixing may mediate these responses. Our findings emphasize that phytoplankton depth distributions are sensitive to global change stressors and effects on depth distributions should be taken into account when predicting phytoplankton responses to increased storms under global change.