Ethan Mark Conrad

and 3 more

Transpressional margins are widespread, and their dynamics are relevant for plate boundary evolution globally. Though transpressional orogen evolution involves a topographic response to deformation, many studies focus only on the structural development of the system ignoring surface processes. Here, we present a new set of analog models constructed to investigate how tectonic and surface processes interact at transpressive plate boundaries and shape topography. Experiments are conducted by deforming a previously benchmarked crustal analog material in a meter-scale plexiglass box while controlling erosion through misting nozzles mounted along the transpressional wedge. To analyze the experiments, we generate digital elevation models from laser scans and conduct image correlation analysis on photos taken during experiments. We focus on three experiments that cover a range of erosional conditions and shortening stages (two end-member erosion models and a dry reference). In all experiments, a bivergent wedge forms, and strain partitioning broadly evolves according to previously established models. Regarding drainage networks, we find that the streams in our models develop differently through feedback between fault development and drainage rearrangement processes. Differences between end-member erosional models can be explained by the varying response of streams to structure modulated by rainfall. Additionally, erosion may influence the structural evolution of transpressional topography, leading to accelerated strike-slip partitioning. From these results, we create a model for developing structures, streams, and topography where incision and valley formation along main structures localize exhumation. We apply insights from the models to natural transpressional systems, including the Transverse Ranges, CA, and the Venezuelan Andes.

Erin Heilman

and 1 more

Wanying Wang

and 1 more

The alignment of intrinsically anisotropic olivine crystals under convection is typically invoked as the cause of the bulk of seismic anisotropy inferred from shear-wave splitting (SWS). This provides a means of constraining the interplay between continental dynamics and the deep mantle, in particular for densely instrumented regions such as North America after USArray. There, a comparison of “fast orientations” from SWS with absolute plate motions (APM) suggests that anisotropy is mainly controlled by plate motions. However, large regional misfits and the limited realism of the APM model motivate us to further explore SWS based anisotropy. If SWS is estimated from olivine alignment in mantle circulation instead, plate-driven flow alone produces anisotropy that has large misfits with SWS. The addition of large-scale mantle density anomalies and lateral viscosity variations significantly improves models. Although a strong continental craton is essential, varying its geometry does, however, not improve the plate-scale misfit. Moreover, models based on higher resolution tomography degrade the fit, indicating issues with the flow model assumptions and/or a missing contributions to anisotropy. We thus compute a “lithospheric complement” to achieve a best-fit, joint representation of asthenospheric and frozen-in lithospheric anisotropy. The complement shows coherent structure and regional correlation with independently imaged crustal and upper mantle anisotropy. Dense SWS measurements therefore provide information on depth-dependent anisotropy with implications for tectonics, but much remains to be understood about continental anisotropy and its origin.

Rachel Bernard

and 3 more

We analyze peridotites from a wide range of tectonic settings to investigate relationships between olivine lattice preferred orientation (LPO) and deformation conditions in naturally deformed rocks. These samples preserve the five olivine LPO types (A through E-type) that rock deformation experiments have suggested are controlled by water content, temperature, stress magnitude, and pressure. The naturally deformed specimens newly investigated here (65 samples) and compiled from an extensive literature review (445 samples) reveal that these factors may matter less than deformation history and/or geometry. Some trends support those predicted by experimentally determined parametric dependence, but several observations disagree — namely that all LPO types are able to form at very low water contents and stresses, and that there is no clear relationship between water content and LPO type. This implies that at the low stresses typical of the mantle, LPO type more often varies as a function of strain geometry. Because olivine LPO is primarily responsible for seismic anisotropy in the upper mantle, the results of this study have several implications. These include (1) the many olivine LPO types recorded in samples from individual localities may explain some of the complex seismic anisotropy patterns observed in the continental mantle, and (2) B-type LPO – where olivine’s “fast axes” align perpendicular to flow direction – occurs under many more conditions than traditionally thought. This study highlights the need for more experiments, and the difficulty in using olivine LPO in naturally-deformed peridotites to infer deformation conditions.

Vera Schulte-Pelkum

and 3 more

The style of convective force transmission to plates and strain-localization within and underneath plate boundaries remain debated. To address some of the related issues, we analyze a range of deformation indicators in southern California from the surface to the asthenosphere. Present-day surface strain rates can be inferred from geodesy. At seismogenic crustal depths, stress can be inferred from focal mechanisms and splitting of shear waves from local earthquakes via crack-dependent seismic velocities. At larger depths, constraints on rock fabrics are obtained from receiver function anisotropy, Pn and P tomography, surface wave tomography, and splitting of SKS and other teleseismic core phases. We construct a synthesis of deformation-related observations focusing on quantitative comparisons of deformation style. We find consistency with roughly N-S compression and E-W extension near the surface and in the asthenospheric mantle. However, all lithospheric anisotropy indicators show deviations from this pattern. Pn fast axes and dipping foliations from receiver functions are fault-parallel with no localization to fault traces and match post-Farallon block rotations in the Western Transverse Ranges. Local shear wave splitting inferences deviate from the stress orientations inferred from focal mechanisms in significant portions of the area. We interpret these observations as an indication that lithospheric fabric, developed during Farallon subduction and subsequent extension, has not been completely reset by present-day transform motion and may influence the current deformation behavior. This provides a new perspective on the timescales of deformation memory and lithosphere-asthenosphere interactions.