Oliver E J Wing

and 20 more

Global flood mapping has developed rapidly over the past decade, but previous approaches have limited scope, function, and accuracy. These limitations restrict the applicability and fundamental science questions that can be answered with existing model frameworks. Harnessing recently available data and modelling methods, this paper presents a new global ~30 m resolution Global Flood Map (GFM) with complete coverage of fluvial, pluvial, and coastal perils, for any return period or climate scenario, including accounting for uncertainty. With an extensive compilation of global benchmark case studies – ranging from locally collected event water levels, to national inventories of engineering flood maps – we execute a comprehensive validation of the new GFM. For flood extent comparisons, we demonstrate that the GFM achieves a critical success index of ~0.75. In the more discriminatory tests of flood water levels, the GFM deviates from observations by ~0.6 m on average. Results indicating this level of global model fidelity are unprecedented in the literature. With an optimistic scenario of future warming (SSP1-2.6), we show end-of-century global flood hazard increases are limited to 9% (likely range -6–29%); this is within the likely climatological uncertainty of -8–12% in the current hazard estimate. In contrast, pessimistic scenario (SSP5-8.5) hazard changes emerge from the background noise in the 2040s, rising to a 49% (likely range of 7–109%) increase by 2100. This work verifies the fitness-for-purpose of this new-generation GFM for impact analyses with a variety of beneficial applications across policymaking, planning, and commercial risk assessment.
Flood inundation modelling across large data sparse areas has been increasing in recent years, driven by a desire to provide hazard information for a wider range of locations. The sophistication of these models has steadily advanced over the past decade due to improvements in remote sensing and modelling capability. There are now several global flood models (GFMs) that seek to simulate water surface dynamics across all rivers and floodplains regardless of data scarcity. However, flood models in data sparse areas lack river bathymetry because this cannot be observed remotely, meaning that a variety of methods for approximating river bathymetry have been developed from uniform flow or downstream hydraulic geometry theory. We argue that bathymetry estimation in these models should follow gradually varying flow theory to account for both uniform and nonuniform flows. We demonstrate that existing methods for bathymetry estimation in GFM’s are only accurate for kinematic reaches and are unable to simulate unbiased water surface profiles for reaches with diffusive or shallow water wave properties. The use of gradually varied flow theory to estimate bathymetry in a GFM reduced water surface profile errors by 66% and eliminated bias due to backwater effects. For a large-scale test case in Mozambique this reduced flood extends by 40% and floodplain storage by 79% at the 1 in 5 year return period. The results have significant implications for the role floodplains play in attenuating river discharges because previous GFM’s based on uniform flow theory will overstate the role of the floodplain.

Paul D Bates

and 28 more

This paper reports a new and significantly enhanced analysis of US flood hazard at 30m spatial resolution. Specific improvements include updated hydrography data, new methods to determine channel depth, more rigorous flood frequency analysis, output downscaling to property tract level and inclusion of the impact of local interventions in the flooding system. For the first time we consider pluvial, fluvial and coastal flood hazards within the same framework and provide projections for both current (rather than historic average) conditions and for future time periods centred on 2035 and 2050 under the RCP4.5 emissions pathway. Validation against high quality local models and the entire catalogue of FEMA 1% annual probability flood maps yielded Critical Success Index values in the range 0.69-0.82. Significant improvements over a previous pluvial/fluvial model version are shown for high frequency events and coastal zones, along with minor improvements in areas where model performance was already good. The result is the first comprehensive and consistent national scale analysis of flood hazard for the conterminous US for both current and future conditions. Even though we consider a stabilization emissions scenario and a near future time horizon we project clear patterns of changing flood hazard (-3.8 to +16% changes in 100yr inundated area at 1° scale), that are significant when considered as a proportion of the land area where human use is possible or in terms of the currently protected land area where the standard of flood defence protection may become compromised by this time.