Alex Burton-Johnson

and 2 more

The geometry of the Antarctic-Phoenix Plate system, with the Antarctic Plate forming both the overriding plate and the conjugate to the subducting oceanic plate, allows quantification of slab age and convergence rate back to the Paleocene and direct comparison with the associated magmatic arc. New Ar-Ar data from Cape Melville (South Shetland Islands, SSI) and collated geochronology shows Antarctic arc magmatism ceased at ~19 Ma. Since the Cretaceous, the arc front remained ~100 km from the trench whilst its rear migrated trenchward at 6 km/Myr. South of the SSI, arc magmatism ceased ~8–5 Myr prior to each ridge-trench collision, whilst on the SSI (where no collision occurred) the end of arc magmatism predates the end of subduction by ~16 Myr. Despite the narrowing and successive cessation of the arc, geochemical and dyke orientation data shows the arc remained in a consistently transitional state of compressional continental arc and extensional backarc tectonics. Numerically relating slab age, convergence rate, and slab dip to the Antarctic-Phoenix Plate system, we conclude that the narrowing of the arc and the cessation of magmatism south of the South Shetland Islands was primarily in response to the subduction of progressively younger oceanic crust, and secondarily to the decreasing convergence rate. Increased slab dip beneath the SSI migrated the final magmatism offshore. Comparable changes in the geometry and composition are observed on the Andean arc, suggesting slab age and convergence rate may affect magmatic arc geometry and composition in settings currently attributed to slab dip variation.

Guillaume Sanchez

and 7 more

We present PetroChron Antarctica, a new relational database including petrological, geochemical and geochronological datasets along with computed rock properties from geological samples across Antarctica. The database contains whole-rock geochemistry with major/trace element and isotope analyses, geochronology from multiple isotopic systems and minerals for given samples, as well as an internally consistent rock classification based on chemical analysis and derived rock properties (i.e., chemical indices, density, p-velocity and heat production). A broad range of meta-information such as geographic location, petrology, mineralogy, age statistics and significance are also included and can be used to filter and assess the quality of the data. Currently, the database contains 11,559 entries representing 10,056 unique samples with varying amounts of geochemical and geochronological data. The distribution of rock types is dominated by mafic (36%) and felsic (33%) compositions, followed by intermediate (22%) and ultramafic (9%) compositions. Maps of age distribution and isotopic composition highlight major episodes of tectonic and thermal activity that define well known crustal heterogeneities across the continent, with the oldest rocks preserved in East Antarctica and more juvenile lithosphere characterising West Antarctica. PetroChron Antarctica allows spatial and temporal variations in geology to be explored at the continental scale and integrated with other Earth-cryosphere-biosphere-ocean datasets. As such, it provides a powerful resource ready for diverse applications including plate tectonic reconstructions, geological/geophysical maps, geothermal heat flow models, lithospheric and glacial isostasy, geomorphology, ice sheet reconstructions, biodiversity evolution, and oceanography.