Stina Wahlgren

and 3 more

Estel Font

and 5 more

Dense overflows from marginal seas are critical pathways of oxygen supply to the Arabian Sea Oxygen Minimum Zone (OMZ), yet these remain inadequately understood. Climate models struggle to accurately reproduce the observed extent and intensity of the Arabian Sea OMZ due to their limited ability to capture processes smaller than their grid scale, such as dense overflows. Multi-month repeated sections by underwater gliders off the coast of Oman resolve the contribution of dense Persian Gulf Water (PGW) outflow to oxygen supply within the Arabian Sea OMZ. We characterize PGW properties, seasonality, transport and mixing mechanisms to explain local processes influencing water mass transformation and oxygen fluxes into the OMZ. Atmospheric forcing at the source region and eddy mesoscale activity in the Gulf of Oman control spatiotemporal variability of PGW as it flows along the shelf of the northern Omani coast. Subseasonally, it is modulated by stirring and shear-driven mixing driven by eddy-topography interactions. The oxygen transport from PGW to the OMZ is estimated to be 1.3 Tmol yr-1 over the observational period, with dramatic inter- and intra-annual variability (±1.6 Tmol yr-1). We show that this oxygen is supplied to the interior of the OMZ through the combined action of double-diffusive and shear-driven mixing. Intermittent shear-driven mixing enhances double-diffusive processes, with mechanical shear conditions (Ri<0.25) prevailing 14% of the time at the oxycline. These findings enhance our understanding of fine-scale processes influencing oxygen dynamics within the OMZ that can provide insights for improved modeling and prediction efforts.

Isabelle S. Giddy

and 4 more

In the sea ice-impacted Southern Ocean, the spring melt of sea ice modifies the upper ocean. These modified waters subduct and enter the global overturning circulation. Submesoscale processes act to modulate the stratification of the mixed layer and therefore mixed layer properties. Sparse observations mean that the role of submesoscales in exchange across the base of the mixed layer in this region is not well constrained. The goal of this study is to determine the interplay between sea ice melt, surface boundary layer forcing, and submesoscale flows in regulating the mixed layer structure in the Antarctic Marginal Ice Zone. High-resolution observations suggest that fine-scale lateral fronts, representative of submesoscale mixed layer eddies (MLEs), arise from mesoscale gradients produced by northwards advecting sea ice meltwater. The strong salinity-driven stratification at the base of the mixed layer confined the MLEs to the upper ocean, limiting submesoscale vertical fluxes across the mixed layer base. This strong stratification prevents the local subduction by submesoscale flow of these modified waters, suggesting that the subduction site that links to the global overturning circulation does not correspond with the location of sea ice melt. However, the presence of MLEs enhanced the magnitude of lateral gradients through stirring and increased the potential for Ekman-driven cross-frontal flow to modulate the stability of the mixed layer and mixed layer properties. The inclusion, particularly of submesoscale Ekman Buoyancy Flux parameterizations, in coupled-climate models, may improve the representation of mixed layer heat and freshwater transport in the ice-impacted Southern Ocean during summer.