Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.
You need to sign in or sign up before continuing. dismiss

The objectives of this paper are to investigate the tradeoffs between a physically constrained neural network and a deep, convolutional neural network and to design a combined ML approach (“VarioCNN”). Our solution is provided in the framework of a cyberinfrastructure that includes a newly designed ML software, GEOCLASS-image, modern high-resolution satellite image datasets (Maxar WorldView data) and instructions/descriptions that may facilitate solving similar spatial classification problems. Combining the advantages of the physically-driven connectionist-geostatistical classification method with those of an efficient CNN, VarioCNN, provides a means for rapid and efficient extraction of complex geophysical information from submeter resolution satellite imagery. A retraining loop overcomes the difficulties of creating a labeled training data set.Computational analyses and developments are centered on a specific, but generalizable, geophysical problem: The classification of crevasse types that form during the surge of a glacier system. A surge is a glacial catastrophe, an acceleration of a glacier to typically 100-200 times its normal velocity, which for a marine-terminating glacier leads to sudden and substantial mass transfer from the cryosphere to the oceans, contributing significantly to sea-level-rise. The sudden and rapid acceleration characteristic of a surge results in formation of crevasses, whose spatial characteristics provide informants on the ice-dynamic processes that occur during the surge. GEOCLASS-image is applied to study the current (2016-2024) surge in the Negribreen Glacier System, Svalbard. The geophysical result is a description of the structural evolution and expansion of the surge, based on crevasse types that capture ice deformation in 6 simplified classes.