The recently identified Prompt Elasto-Gravity Signals (PEGS), generated by large earthquakes, propagate at the speed of light and are sensitive to the earthquake magnitude and focal mechanism. These characteristics make PEGS potentially very advantageous for earthquake and tsunami early warning. PEGS-based early warning does not suffer from the saturation of magnitude estimations problem that P-wave based early warning algorithms have, and could be faster than Global Navigation Satellite Systems (GNSS)-based systems while not requiring a priori assumptions on slip distribution. We use a deep learning model called PEGSNet to track the temporal evolution of the magnitude of the 2010 $\textrm{M}_{\textrm{w}}$ 8.8 Maule, Chile earthquake. The model is a Convolutional Neural Network (CNN) trained on a database of synthetic PEGS – simulated for an exhaustive set of possible earthquakes distributed along the Chilean subduction zone – augmented with empirical noise. The approach is multi-station and leverages the information recorded by the seismic network to estimate as fast as possible the magnitude and location of an ongoing earthquake. Our results indicate that PEGSNet could have estimated that the magnitude of the Maule earthquake was above 8.7, 90 seconds after origin time. Our offline simulations using real data and noise recordings further support the instantaneous tracking of the source time function of the earthquake and show that deploying seismic stations in optimal locations could improve the performance of the algorithm.

Pablo Lara

and 3 more

We introduce the Ensemble Earthquake Early Warning System (E3WS), a set of Machine Learning algorithms designed to detect, locate and estimate the magnitude of an earthquake using 3 seconds of P waves recorded by a single station. The system is made of 6 Ensemble Machine Learning algorithms trained on attributes computed from ground acceleration time series in the temporal, spectral and cepstral domains. The training set comprises datasets from Peru, Chile, Japan, and the STEAD global dataset. E3WS consists of three sequential stages: detection, P-phase picking and source characterization. The latter involves magnitude, epicentral distance, depth and back-azimuth estimation. E3WS achieves an overall success rate in the discrimination between earthquakes and noise of 99.9%, with no false positive (noise mis-classified as earthquakes) and very few false negatives (earthquakes mis-classified as noise). All false negatives correspond to M ≤ 4.3 earthquakes, which are unlikely to cause any damage. For P-phase picking, the Mean Absolute Error is 0.14 s, small enough for earthquake early warning purposes. For source characterization, the E3WS estimates are virtually unbiased, have better accuracy for magnitude estimation than existing single-station algorithms, and slightly better accuracy for earthquake location. By updating estimates every second, the approach gives time-dependent magnitude estimates that follow the earthquake source time function. E3WS gives faster estimates than present alert systems relying on multiple stations, providing additional valuable seconds for potential protective actions.

Philippe DANRE

and 4 more

Chao Liang

and 4 more

Fluid-filled cracks sustain a slow guided wave (Krauklis wave or crack wave) whose resonant frequencies are widely used for interpreting long period (LP) and very long period (VLP) seismic signals at active volcanoes. Significant efforts have been made to model this process using analytical developments along an infinite crack or numerical methods on simple crack geometries. In this work, we develop an efficient hybrid numerical method for computing resonant frequencies of complex-shaped fluid-filled cracks and networks of cracks and apply it to explain the ratio of spectral peaks in the VLP signals from the Fani Maoré submarine volcano that formed in Mayotte in 2018. By coupling triangular boundary elements and the finite volume method, we successfully handle complex geometries and achieve computational efficiency by discretizing solely the crack surfaces. The resonant frequencies are directly determined through eigenvalue analysis. After proper verification, we systematically analyze the resonant frequencies of rectangular and elliptical cracks, quantifying the effect of aspect ratio and crack stiffness ratio. We then discuss theoretically the contribution of fluid viscosity and seismic radiation to energy dissipation. Finally, we obtain a crack geometry that successfully explains the characteristic ratio between the first two modes of the VLP seismic signals from the Fani Maoré submarine volcano in Mayotte. Our work not only reveals rich eigenmodes in complex-shaped cracks but also contributes to illuminating the subsurface plumbing system of active volcanoes. The developed model is readily applicable to crack wave resonances in other geological settings, such as glacier hydrology and hydrocarbon reservoirs.

Daniel Mata Flores

and 4 more

Underwater fiber optic cables commonly traverse a variety of seafloor conditions, which leads to an uneven mechanical coupling between the cable and the ocean bottom. On rough seafloor bathymetry, some cable portions might be suspended and thus susceptible to Vortex-Induced Vibrations (VIV) driven by deep ocean currents. Here, we examine the potential of Distributed Acoustic Sensing (DAS) to monitor deep-sea currents along suspended sections of underwater telecom fiber optic cables undergoing VIV. Oscillations of a seafloor fiber optic cable located in southern France are recorded by DAS along cable sections presumably hanging. Their characteristic frequencies are lower than 1 Hz, at different ocean depths, and have an amplitude-dependency consistent with the driving mechanism being VIV. Based on a theoretical proportionality between current speed and VIV frequencies, we derive ocean current speed time series at 2390 m depth from the vortex shedding frequencies recorded by DAS. The DAS-derived current speed time series is in agreement with recordings by a current meter located 3.75 km away from the hanging cable section (similar dominant period, high correlation after time shift). The DAS-derived current speed time series displays features, such as characteristic periods and spectral decay, associated with the generation of internal gravity waves and weak oceanic turbulence in the Mediterranean Sea. The results demonstrate the potential of DAS along hanging segments of fiber optic cables to monitor a wide range of oceanography processes, at depths barely studied with current instrumentation.

Daniel Mata Flores

and 4 more

Distributed Acoustic Sensing (DAS) enables data acquisition for underwater Earth Science with unprecedented spatial resolution. Submarine fibre optic cables traverse sea bottom features that can lead to suspended or decoupled cable portions, and are exposed to the ocean dynamics and to high rates of marine erosion or sediment deposition, which may induce temporal variations of the cable’s mechanical coupling to the ocean floor. Although these spatio-temporal fluctuations of the mechanical coupling affect the quality of the data recorded by DAS, and determine whether a cable section is useful or not for geophysical purposes, the detection of unsuitable cable portions has not been investigated in detail. Here, we report on DAS observations of two distinct vibration regimes of seafloor fibre optic cables: a high-frequency (> 2 Hz) regime we associate to cable segments pinned between seafloor features, and a low-frequency (< 1 Hz) regime we associate to suspended cable sections. While the low-frequency oscillations are driven by deep ocean currents, the high-frequency oscillations are triggered by the passage of earthquake seismic waves. Using Proper Orthogonal Decomposition, we demonstrate that high-frequency oscillations excite normal modes comparable to those of a finite 1D wave propagation structure. We further identify trapped waves propagating along cable portions featuring high-frequency oscillations. Their wave speed is consistent with that of longitudinal waves propagating across the steel armouring of the cable. The DAS data on cable sections featuring such cable waves are dominated by highly monochromatic noise. Our results suggest that the spatio-temporal evolution of the mechanical coupling between fibre optic cables exposed to the ocean dynamics and the seafloor can be monitored through the combined analysis of the two vibration regimes presented here, which provides a DAS-based method to identify underwater cable sections unsuitable for the analysis of seismic waves.

Eric Fielding

and 7 more

The subduction zone of the Cocos Plate beneath Southern Mexico has major variations in the megathrust geometry and behavior. The subduction segment beneath the Oaxaca state of Mexico has relatively frequent large earthquakes on the shallow part of the megathrust and within the subducting slab, and it also has large aseismic slow-slip events. The slab geometry under Oaxaca includes part of the subhorizontal “flat-slab” zone extending far from the trench beneath southern Mexico and the beginning of its transition to more regular subduction geometry to the southeast. We study the rupture of the 16 February 2018 Mw 7.2 Pinotepa earthquake near Pinotepa Nacional in Oaxaca that was a thrust event on the subduction interface. The Pinotepa earthquake was about 350 km away from the 8 September 2017 Mw 8.2 Tehuantepec earthquake in the subducting slab offshore Oaxaca and Chiapas; it was in an area of Coulomb stress decrease from the M8.2 quake, so it seems unlikely to be a regular aftershock and was not triggered by the static stress change. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite-fault slip models for the M7.2 Pinotepa earthquake. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our Bayesian (AlTar) static slip model for the Pinotepa earthquake shows all of the slip confined to a very small (10-20 km diameter) rupture, similar to some early seismic waveform fits. The Pinotepa earthquake ruptured a portion of the Cocos megathrust that has been previously mapped as partially coupled and shows that at least small asperities in that zone of the subduction interface are fully coupled and fail in high-stress drop earthquakes. The previous 2012 Mw 7.4 Ometepec earthquake is another example of asperity in the partially coupled zone but was not imaged by InSAR so the rupture extent is not so well constrained. The preliminary NEIC epicenter for the Pinotepa earthquake was about 40 km away (NE) from the rupture imaged by InSAR, but the NEIC updated epicenter and Mexican SSN location are closer. Preliminary analysis of GPS data after the Pinotepa earthquake indicates rapid afterslip on the megathrust in the region of coseismic slip. Atmospheric noise masks the postseismic signal on early InSAR data.

Junle Jiang

and 18 more

Dynamic modeling of sequences of earthquakes and aseismic slip (SEAS) provides a self-consistent, physics-based framework to connect, interpret, and predict diverse geophysical observations across spatial and temporal scales. Amid growing applications of SEAS models, numerical code verification is essential to ensure reliable simulation results but is often infeasible due to the lack of analytical solutions. Here, we develop two benchmarks for three-dimensional (3D) SEAS problems to compare and verify numerical codes based on boundary-element, finite-element, and finite-difference methods, in a community initiative. Our benchmarks consider a planar vertical strike-slip fault obeying a rate- and state-dependent friction law, in a 3D homogeneous, linear elastic whole-space or half-space, where spontaneous earthquakes and slow slip arise due to tectonic-like loading. We use a suite of quasi-dynamic simulations from 10 modeling groups to assess the agreement during all phases of multiple seismic cycles. We find excellent quantitative agreement among simulated outputs for sufficiently large model domains and small grid spacings. However, discrepancies in rupture fronts of the initial event are influenced by the free surface and various computational factors. The recurrence intervals and nucleation phase of later earthquakes are particularly sensitive to numerical resolution and domain-size-dependent loading. Despite such variability, key properties of individual earthquakes, including rupture style, duration, total slip, peak slip rate, and stress drop, are comparable among even marginally resolved simulations. Our benchmark efforts offer a community-based example to improve numerical simulations and reveal sensitivities of model observables, which are important for advancing SEAS models to better understand earthquake system dynamics.