Opal Issan

and 3 more

The ambient solar wind plays a significant role in propagating interplanetary coronal mass ejections and is an important driver of space weather geomagnetic storms. A computationally efficient and widely used method to predict the ambient solar wind radial velocity near Earth involves coupling three models: Potential Field Source Surface, Wang-Sheeley-Arge (WSA), and Heliospheric Upwind eXtrapolation. However, the model chain has eleven uncertain parameters that are mainly non-physical due to empirical relations and simplified physics assumptions. We, therefore, propose a comprehensive uncertainty quantification (UQ) framework that is able to successfully quantify and reduce parametric uncertainties in the model chain. The UQ framework utilizes variance-based global sensitivity analysis followed by Bayesian inference via Markov chain Monte Carlo to learn the posterior densities of the most influential parameters. The sensitivity analysis results indicate that the five most influential parameters are all WSA parameters. Additionally, we show that the posterior densities of such influential parameters vary greatly from one Carrington rotation to the next. The influential parameters are trying to overcompensate for the missing physics in the model chain, highlighting the need to enhance the robustness of the model chain to the choice of WSA parameters. The ensemble predictions generated from the learned posterior densities significantly reduce the uncertainty in solar wind velocity predictions near Earth.

Ryan McGranaghan

and 11 more

The magnetosphere, ionosphere and thermosphere (MIT) act as a coherently integrated system (geospace), driven in part by solar influences and characterized by variability and complexity. Among the most important and yet uncertain aspects of the geospace system is energy and momentum coupling between regions, which is, in part, accomplished by the transfer of charged particles from the magnetosphere to the ionosphere in a process known as particle precipitation, and in the opposite direction by ion outflow. Both processes are inherently multiscale and manifest the variabilities and complexities of the geospace system. Despite the importance of the transfer of particles, existing models are increasingly ill-equipped to provide the specification necessary for the growing demand for geospace now- and forecasts. Due to recent trends in the availability of data, we now face an exciting opportunity to progress particle transfer in geospace through the intersection of traditional approaches and state-of-the-art data-driven sciences. We reveal novel particle transfer models utilizing machine learning (ML), present results from the models, and provide an evaluation of their capabilities including comparisons with observations and the current ’state-of-the-art’ models (e.g., OVATION Prime for particle precipitation and the Gamera-Ionosphere Polar Wind Model for ion outflow). We detail the data wrangling required to utilize the available geospace observations to make progress on the long-standing challenge of particle transfer and place specific emphasis on the discovery possible when ML models are appropriate and robustly interrogated in the context of physical understanding. Our presentation helps illustrate the trends in the application of data science in space science.