PRAKAT MODI

and 2 more

Continental-scale river hydrodynamic modeling is useful for understanding the global hydrological cycle, and model evaluation is essential for robust calibration and assessing model performance. Although many models have been robustly evaluated using several variables separately, methods for the integrated multivariable evaluation of models have yet to be established. Here, we propose an evaluation method using the overall basin skill score (OSK), based on considering the spatial distribution of different variables via a sub-basin approach. The OSK approach integrates multiple variables to overcome observation-related limitations, such as the distinct temporal and spatial dimensions and unit of measurement unique to each variable, thus judging model performance objectively at the sub-basin and basin scales. As a case study, the global river model, CaMa-Flood, was evaluated using three variables¾discharge, water surface elevation, and flooded area¾for the Amazon Basin, focusing on the impact of using different types of baseline topography data (SRTM and MERIT digital elevation models [DEMs]). CaMa-Flood with the MERIT DEM performed robustly well over a wide range of river depth parameters with a maximum OSK of 0.51 against 0.46 for the SRTM DEM. Single-variable evaluation for all three variables proved inadequate due to low sensitivity for river bathymetry, with good performance outcomes potentially arising for the wrong reasons. This study confirmed that model evaluation using this method enables a balanced evaluation of different variables and a robust estimation of the best parameter set. The proposed method proved useful for flexible, integrated multivariable model evaluation, with modifications allowed per the user’s requirements.

Prakat Modi

and 2 more

Large-scale river hydrodynamic model act as fundamental tool for many scientific applications related to water cycle, biogeochemistry, and carbon cycle. Even though process representation in the physically based hydrodynamic models has improved significantly in recent times, due to many error sources the uncertainty reduction and evaluation remains a key issue. Previously most of the research focused on the evaluation of hydrodynamic model considering single variable only i.e., discharge due limitations related to models and data availability. The recent advances in hydrodynamic modelling and remote sensing helped to overcome limitation. Some recent studies performed calibration and validation considering multiple variables but were unable to integrate them into a single evaluation score due to different spatial and temporal dimension of variables and thus make it hard to judge the overall performance. Here, we have evaluated the performance of Catchment-based Macroscale Floodplain (CaMa-Flood) hydrodynamic model over Amazon basin considering multiple variables i.e., discharge (Q), water surface elevation (WSE) and flooded area (FA) for a topography data multi-error removed improved terrain (MERIT) DEM. We proposed an evaluation method and introduced a metric “overall basin skill score” (OSK) to integrate the performances due to multiple (three here) variables considering their spatial distribution via a sub-basin approach and provide the evaluation on a scale of 0 to 1. The integrated method showed the robustness in the method and able to detect the best river channel depth parameter set with maximum OSK of 0.57, whereas the evaluation using single variable proved inadequate due to different sensitivity of variables and maximum metric score were obtained for many parameters sets. The proposed method enables a balanced evaluation of different variables and proved useful to integrated multivariable model evaluation with reducing the chances of getting the right results due to wrong reasons. Preprint related to this work: https://doi.org/10.1002/essoar.10506596.1