Jean-Christophe Golaz

and 70 more

This work documents version two of the Department of Energy’s Energy Exascale Earth System Model (E3SM). E3SM version 2 (E3SMv2) is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima (DECK) simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate is generally realistic, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Programme (WCRP) assessment. However, E3SMv2 significantly underestimates the global mean surface temperature in the second half of the historical record. An analysis of single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.

Flannery Dolan

and 6 more

Land scarcity is increasing over time, driven by complex multi-sector dynamics. The impacts of land scarcity on the economy and environment are multi-faceted and regional, so any action to convert land will contain inherent tradeoffs. These impacts are complicated by the deeply uncertain evolution of the various sectors influencing land scarcity. A need therefore exists to provide multi-metric and multi-sector assessments that are robust to myriad uncertainties. Land conservation effectively limits the supply of productive land, while biofuel consumption increases the demand and competition for that land, and how these dynamics individually and jointly propagate to economic and environmental impacts is an important open question. To address this, we adopt the Global Change Analysis Model (GCAM) that has representations of various important sectors including the climate, land-use economy, energy systems, agriculture, and water resources. Scenarios of increased land demand (from biofuels) and decreased land supply (from conservation) under various socioeconomic pathways drawn from the SSPs were simulated using GCAM. We find that while biofuel consumption and land conservation reduce carbon emissions, this comes at the cost of higher food prices, reduced crop production, and increased water withdrawals. Additionally, some regions experience these tradeoffs more severely than others and are more heavily impacted from the same biofuel mandate or by an additional percent of protected land. These and other findings highlight the importance of multi-sector modeling frameworks that capture many cross-sector linkages, and acknowledge the important uncertainties confronting the human-Earth system when making any analysis of the land scarcity impacts.