Typhoon In-Fa hit continental China in July 2021 and caused an unprecedented rainfall amount, making it a typical case to examine the ability of numerical models in forecasting landfalling typhoons. The record-breaking storm was simulated using a 3-km-resolution weather research and forecast (WRF) model with spectral bin microphysics scheme (BIN) and two-moment seven-class bulk parameterization scheme (BULK). The simulations were then separated into three different typhoon landfall periods (i.e., pre-landfall, landfall, and post-landfall). At present, the ability of WRF and other mesoscale models to accurately simulate the typhoon precipitation hydrometeors is still limited. To evaluate the performances of BIN and BULK schemes of WRF model in simulating the condensed water in Typhoon In-Fa, the observed microwave brightness temperature and radar reflectivity from the core observatory of Global Precipitation Mission (GPM) satellite are directly used for validation with the help of a satellite simulator. It is suggested that BIN scheme has better performance in estimating the spatial structure, overall amplitude, and precise location of the condensed water in typhoons before landfall. During typhoon landfall, the performance of BIN scheme in simulating the structure and location of the condensate is close to that of BULK scheme, but the condensate intensity prediction by BIN scheme is still better; BULK scheme performs even better than BIN scheme in the prediction of condensate structure and location after typhoon landfall. Both schemes seem to have poorer performances in simulating the spatial structure of precipitation hydrometeors during typhoon landfall than before/after typhoon landfall. Moreover, BIN scheme simulates more (less) realistic warm (cold) rain processes than BULK scheme, especially after typhoon landfall. BULK scheme simulates more cloud water and larger convective updraft than BIN scheme, and this is also reported in many model studies comparing BIN and BULK schemes.