Rohit Mathur

and 7 more

Several locations across the United States in non-compliance with the national standard for ground-level ozone (O3) are thought to have sizeable influences from distant extra-regional emission sources or natural stratospheric O3, which complicates design of local emission control measures. To quantify the amount of long-range transported O3 (LRT O3), its origin, and change over time, we conduct and analyze detailed sensitivity calculations characterizing the response of O3 to emissions from different source regions across the Northern Hemisphere in conjunction with multi-decadal simulations of tropospheric O3 distributions and changes. Model calculations show that the amount of O3 at any location attributable to sources outside North America varies both spatially and seasonally. On a seasonal-mean basis, during 1990-2010, LRT O3 attributable to international sources steadily increased by 0.06-0.2 ppb yr-1 at locations across the United States and arose from superposition of unequal and contrasting trends in individual source-region contributions, which help inform attribution of the trend evident in O3 measurements. Contributions of emissions from Europe steadily declined through 2010, while those from Asian emissions increased and remained dominant. Steadily rising NOx emissions from international shipping resulted in increasing contributions to LRT O3, comparable to those from Asian emissions in recent years. Central American emissions contribute a significant fraction of LRT O3 in southwestern United States. In addition to the LRT O3 attributable to emissions outside of North America, background O3 across the continental United States is comprised of a sizeable and spatially variable fraction that is of stratospheric origin (29-78%).

Wyat Appel

and 4 more

The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science chemical transport model (CTM) capable of simulating the emission, transport and fate of numerous air pollutants. Similarly, the Weather Research and Forecasting (WRF) model is a state-of-the-science meteorological model capable of simulating meteorology at many scales (e.g. global to urban). The coupled WRF-CMAQ system integrates these two models in a “two-way” configuration which allows feedback effects between the chemical (e.g. aerosols) and physical (e.g. solar radiation) states of the atmosphere and more frequent communication between the CTM and meteorological model than is typically done in uncoupled WRF-CMAQ simulations. In this study we apply the various cumulus parameterization (CP) options available in WRF at horizontal grid spacings ranging from regional scale (i.e. 12-km) to urban scale (i.e. 4 and 1 km), focused on the July 2011 DISCOVER-AQ campaign that took place over the Baltimore-Washington D.C region. Of particular interest is the evaluation of the WRF simulated clouds, as analysis of previous WRF-CMAQ simulations using a “standard” 12-km configuration for the model suggest that WRF has difficulty predicting clouds (particularly fair-weather clouds), with decreasing skill at finer horizontal grid spacings. Here we will examine the impact that the WRF CP options have on cloud predictions, using available satellite data to evaluate model the performance. We then examine how changes in the WRF simulated clouds affect CMAQ predictions of ozone and PM2.5 at the various scales.