Qiong Zhang

and 6 more

Wei Hu

and 6 more

Recently, there has been a surge of international interest in extraterrestrial exploration targeting the Moon, Mars, the moons of Mars, and various asteroids. This contribution discusses how current state-of-the-art Earth-based testing for designing rovers and landers for these missions currently leads to overly optimistic conclusions about the behavior of these devices upon deployment on the targeted celestial bodies. The key misconception is that gravitational offset is necessary during the terramechanics testing of rover and lander prototypes on Earth. The body of evidence supporting our argument is tied to a small number of studies conducted during parabolic flights and insights derived from newly revised scaling laws. We argue that what has prevented the community from fully diagnosing the problem at hand is the absence of effective physics-based models capable of simulating terramechanics under low gravity conditions. We developed such a physics-based simulator and utilized it to gauge the mobility of early prototypes of the Volatiles Investigating Polar Exploration Rover (VIPER). This contribution discusses the results generated by this simulator, how they correlate with physical test results from the NASA-Glenn SLOPE lab, and the fallacy of the gravitational offset in rover and lander testing. The simulator, which is open-sourced and publicly available, supports trafficability analysis and facilitates principled studies into in-situ resource utilization activities like digging, bulldozing, and berming in low gravity environments.

Santiago Benavides

and 5 more

Sediment transport in rivers near the threshold of grain motion is characterized by rare but large transport events. This intermittency makes it difficult to relate average sediment flux to average flow conditions, or to define an unambiguous threshold for grain entrainment. Although intermittent sediment transport can be observed and characterized, its origins are unclear. In this study we investigate bedload sediment transport near the threshold of grain motion in an experimental flume to examine the origins of intermittency. We apply image-processing techniques to high-speed video of grains in a narrow flume, which allows us to track individual particles and measure statistics of particle motion. Bedload sediment transport near the threshold of grain motion is very low, allowing us to approximate the time evolution of the sediment flux via a polynomial expansion, including a linear growth rate and a nonlinear term which saturates the growth. We introduce a noisy coefficient to the linear growth rate term (“multiplicative noise”), rather than adding the noise to the equation, to model the inherent fluctuations in the system. We demonstrate that multiplicative noise near the threshold of grain motion can account for the observed intermittency. We use analytical results from bifurcation theory in the presence of multiplicative noise to analyze our experimental results, quantifying the noise responsible for the intermittency and calculating the critical shear stress for grain entrainment in a novel way that is consistent with the physics of grain motion at low transport stages.