Jesse Farmer

and 10 more

Biological productivity in the ocean directly influences the partitioning of carbon between the atmosphere and ocean interior. Through this carbon cycle feedback, changing ocean productivity has long been hypothesized as a key pathway for modulating past atmospheric carbon dioxide levels and hence global climate. Because phytoplankton preferentially assimilate the light isotopes of carbon and the major nutrients nitrate and silicic acid, stable isotopes of carbon (C), nitrogen (N), and silicon (Si) in seawater and marine sediments can inform on ocean carbon and nutrient cycling, and by extension the relationship with biological productivity and global climate. Here we compile water column C, N, and Si stable isotopes from GEOTRACES-era data in four key ocean regions to review geochemical proxies of oceanic carbon and nutrient cycling based on the C, N, and Si isotopic composition of marine sediments. External sources and sinks as well as internal cycling (including assimilation, particulate matter export, and regeneration) are discussed as likely drivers of observed C, N, and Si isotope distributions in the ocean. The potential for C, N, and Si isotope measurements in sedimentary archives to record aspects of past ocean C and nutrient cycling is evaluated, along with key uncertainties and limitations associated with each proxy. Constraints on ocean C and nutrient cycling during late Quaternary glacial-interglacial cycles and over the Cenozoic are examined. This review highlights opportunities for future research using multielement stable isotope proxy applications and emphasizes the importance of such applications to reconstructing past changes in the oceans and climate system.

Tristan Horner

and 26 more

Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. How the biological pump operated in the past is therefore important for understanding past atmospheric carbon dioxide concentrations and Earth’s climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including: iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES-era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the elements that are least sensitive to productivity may be used to trace other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth’s climate history.
The carbonate chemistry of Arctic Ocean seafloor and its vulnerability to ocean acidification remains poorly explored. This limits our ability to quantify how biogeochemical processes and bottom water conditions shape sedimentary carbonate chemistry, and to predict how climate change may affect such biogeochemical processes at the Arctic Ocean seafloor. Here, we employ an integrated model assessment that explicitly resolves benthic pH and carbonate chemistry along a S—N transect in the Barents Sea. We identify the main drivers of observed carbonate dynamics and estimate benthic fluxes of dissolved inorganic carbon and alkalinity to the Arctic Ocean. We explore how bottom water conditions and in-situ organic matter degradation shape these processes and show that organic matter transformation strongly impacts pH and carbonate saturation (Ω) variations. Aerobic organic matter degradation drives a negative pH shift (pH < 7.6) in the upper 2—5 cm, producing Ω < 1. This causes shallow carbonate dissolution, buffering porewater pH to around 8.0. Organic matter degradation via metal oxide (Mn/Fe) reduction pathways further increases pH and carbonate saturation state. At the northern stations, where Ω > 5 at around 10–25 cm, model simulations result in authigenic carbonate precipitation. Furthermore, benthic fluxes of dissolved inorganic carbon (12.5—59.5 µmol cm−2 yr−1) and alkalinity (11.3—63.2 µmol cm−2 yr−1) are 2—3-fold greater in the northern sites due to greater carbonate dissolution. Our assessment is of significant relevance to predict how changes in the Arctic Ocean may shift carbon burial and pH buffering into the next century.

Katharine Hendry

and 7 more