You need to sign in or sign up before continuing. dismiss

We present general empirical analytical equations of bow shock structures historically used at Mars, and show how to estimate automatically the statistical position of the bow shock with respect to spacecraft data from 2D polar and 3D quadratic fits. Analytical expressions of bow shock normal in 2D and 3D are given for any point on the shock’s surface. This empirical technique is applicable to any planetary environment with a defined shock structure. Applied to the Martian environment and the NASA/MAVEN mission, the predicted bow shock location from ephemerides data is on average within 0.15 planetary radius Rp of the actual shock crossing as seen from magnetometer data. Using a simple predictor-corrector algorithm based on the absolute median deviation of the total magnetic field and the general form of quasi-perpendicular shock structures, this estimate is further refined to within a few minutes of the true crossing (≈0.05 Rp). With the refined algorithm, 14,929 bow shock crossings, predominantly quasi-perpendicular, are detected between 2014 and 2021. Analytical 2D conic and 3D quadratic surface fits, as well as standoff distances, are successively given for Martian years 32 to 35, for several (seasonal) solar longitude ranges and for two solar EUV flux levels. Although asymmetry in Y and Z Mars Solar Orbital coordinates is on average small, it is shown that for Mars years 32 and 35, Ls = [135-225] degrees and high solar flux, it can become particularly noticeable and is superimposed to the usual North-South asymmetry due to the presence of crustal magnetic fields.

Jasper S. Halekas

and 9 more

We describe a new method to analyze the properties of plasma waves, and apply it to observations made upstream from Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The slow measurement cadence of most charged particle instrumentation has limited the application of analysis techniques based on correlations between particle and magnetic field measurements. We show that we can extend the frequency range of applicability for these techniques, for a subset of waves that remain coherent over multiple wave periods, by sub-sampling velocity distribution function measurements and binning them by the wave phase. This technique enables the computation of correlations and transport ratios for plasma waves previously inaccessible to this technique at Mars. By computing the cross helicity, we find that most identified waves propagate upstream in the plasma frame. This supports the conclusions of previous studies, but enables a clearer determination of the intrinsic wave mode and characteristics. The intrinsic properties of observed waves with frequencies close to the proton cyclotron frequency have little spatial variability, but do have large temporal variations, likely due to seasonal changes in the hydrogen exosphere. In contrast, the predominant characteristics of waves at higher frequencies have less temporal variability, but more spatial variability. We find several indications of the presence of multiple wave modes in the lower frequency wave observations, with unusual wave properties observed for propagation parallel to the magnetic field and for background magnetic fields nearly perpendicular to the solar wind flow.