loading page

Understanding Contributions of Paleo-Informed Natural Variability and Climate Changes on Hydroclimate Extremes in the Central Valley Region of California
  • Rohini S Gupta,
  • Scott Steinschneider,
  • Patrick M. Reed
Rohini S Gupta
Cornell University

Corresponding Author:[email protected]

Author Profile
Scott Steinschneider
Cornell University
Author Profile
Patrick M. Reed
Cornell University
Author Profile

Abstract

To aid California's water sector to better manage future climate extremes, we present a method for creating a regional ensemble of plausible daily future climate and streamflow scenarios that represent natural climate variability captured in a network of tree-ring chronologies, and then embed anthropogenic climate change trends within those scenarios. We use 600 years of paleo-reconstructed weather regimes to force a stochastic weather generator, which we develop for five subbasins in the San Joaquin River in the Central Valley region of California. To assess the compound effects of climate change, we create temperature series that reflect scenarios of warming and precipitation series that are scaled to reflect thermodynamically driven shifts in the daily precipitation distribution. We then use these weather scenarios to force hydrologic models for each of the San Joaquin subbasins. The paleo-forced streamflow scenarios highlight periods in the region's past that produce flood and drought extremes that surpass those in the modern record and exhibit large non-stationarity through the reconstruction. Variance decomposition is employed to characterize the contribution of natural variability and climate change to variability in decision-relevant metrics related to floods and drought. Our results show that a large portion of variability in individual subbasin and spatially compounding extreme events can be attributed to natural variability, but that anthropogenic climate changes become more influential at longer planning horizons. The joint importance of climate change and natural variability in shaping extreme floods and droughts is critical to resilient water systems planning and management in the Central Valley region.
12 Mar 2023Submitted to ESS Open Archive
13 Mar 2023Published in ESS Open Archive