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Abstract

To aid California’s water sector to better manage future climate extremes, we present a method for creating a regional ensemble

of plausible daily future climate and streamflow scenarios that represent natural climate variability captured in a network

of tree-ring chronologies, and then embed anthropogenic climate change trends within those scenarios. We use 600 years

of paleo-reconstructed weather regimes to force a stochastic weather generator, which we develop for five subbasins in the

San Joaquin River in the Central Valley region of California. To assess the compound effects of climate change, we create

temperature series that reflect scenarios of warming and precipitation series that are scaled to reflect thermodynamically driven

shifts in the daily precipitation distribution. We then use these weather scenarios to force hydrologic models for each of the San

Joaquin subbasins. The paleo-forced streamflow scenarios highlight periods in the region’s past that produce flood and drought

extremes that surpass those in the modern record and exhibit large non-stationarity through the reconstruction. Variance

decomposition is employed to characterize the contribution of natural variability and climate change to variability in decision-

relevant metrics related to floods and drought. Our results show that a large portion of variability in individual subbasin and

spatially compounding extreme events can be attributed to natural variability, but that anthropogenic climate changes become

more influential at longer planning horizons. The joint importance of climate change and natural variability in shaping extreme

floods and droughts is critical to resilient water systems planning and management in the Central Valley region.
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Key Points:8

• We introduce a framework to create 600-year ensembles of future weather and stream-9

flow for basins in the San Joaquin Valley.10

• We discover vast variability and non-stationarity in flood and drought extremes11

in the region over the past 600 years.12

• Variability in extremes is primarily attributed to natural variability, but climate13

changes are influential under longer planning horizons.14
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Abstract15

To aid California’s water sector to better manage future climate extremes, we present16

a method for creating a regional ensemble of plausible daily future climate and stream-17

flow scenarios that represent natural climate variability captured in a network of tree-18

ring chronologies, and then embed anthropogenic climate change trends within those sce-19

narios. We use 600 years of paleo-reconstructed weather regimes to force a stochastic weather20

generator, which we develop for five subbasins in the San Joaquin River in the Central21

Valley region of California. To assess the compound effects of climate change, we cre-22

ate temperature series that reflect scenarios of warming and precipitation series that are23

scaled to reflect thermodynamically driven shifts in the daily precipitation distribution.24

We then use these weather scenarios to force hydrologic models for each of the San Joaquin25

subbasins. The paleo-forced streamflow scenarios highlight periods in the region’s past26

that produce flood and drought extremes that surpass those in the modern record and27

exhibit large non-stationarity through the reconstruction. Variance decomposition is em-28

ployed to characterize the contribution of natural variability and climate change to vari-29

ability in decision-relevant metrics related to floods and drought. Our results show that30

a large portion of variability in individual subbasin and spatially compounding extreme31

events can be attributed to natural variability, but that anthropogenic climate changes32

become more influential at longer planning horizons. The joint importance of climate33

change and natural variability in shaping extreme floods and droughts is critical to re-34

silient water systems planning and management in the Central Valley region.35

Plain Language Summary36

California experiences cycles of floods and droughts that can be driven by both nat-37

ural variability and climate change. The specific role of these drivers play in influenc-38

ing extremes is uncertain, but can strongly dictate how to best plan and manage regional39

water systems for future extremes. To better quantify the role of these drivers, we in-40

troduce a framework that utilizes a 600-year tree-ring reconstruction to create long se-41

quences of plausible ensembles of future weather and streamflow for key basins in the42

San Joaquin Valley. We find that a large portion of variability in extremes can be at-43

tributed to natural variability, but that anthropogenic climate changes become more in-44

fluential at longer planning horizons. Furthermore, our perception of important drivers45

can be skewed depending on the specific definitions used to analyze floods and droughts,46
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which can present significant challenges for adaptation planning and infrastructure de-47

velopment tied to hydroclimate indicators. This study also illustrates the vast variabil-48

ity in extremes that the region has experienced over the past 600 years and highlights49

the pitfalls of using stationary risk measures.50

1 Introduction51

The recent drought conditions impacting California are occurring within the broader52

context of two decades of extreme climate variability. Since 2000, California has expe-53

rienced four periods of drought: (2000-2003, 2007-2009, 2012-2016, and the ongoing drought54

beginning in the 2020). The former three complete drought periods were all ended by55

extreme atmospheric river (AR)-driven events. While offering much needed precipita-56

tion, these storms often cause widespread flooding and landslides. In 2017, extreme pre-57

cipitation associated with ARs generated California’s wettest winter in a century and58

caused catastrophic damage to Oroville Dam, which prompted the evacuation of 188,00059

people and required nearly $1 billion in repairs (Henn et al., 2020). Since this event, Cal-60

ifornia has ebbed and flowed through wet and dry periods, including experiencing the61

driest 22-year period in at least 1,200 years (A. P. Williams et al., 2022).62

The recent two decades of California climate extremes are in part a manifestation63

of the extreme natural variability that characterizes the regional climate. Tree ring re-64

constructions have shown that the region experienced multiple persistent megadroughts65

over the past two millennia (late 800s, mid-1100s, late 1200s, mid-1400s, and late 1500s),66

long before anthropogenic influence (Stahle et al., 2000, 2007; A. Williams et al., 2021).67

Multi-millennial control runs of coupled global climate models (GCMs) have also repro-68

duced megadroughts in the Southwestern U.S. even without any external sea surface tem-69

perature (SST) forcing, suggesting that these droughts can develop due to internal cli-70

mate variability alone (Hunt, 2011). Some (but not all) of this natural drought variabil-71

ity is linked to major modes of atmospheric and oceanic variability, such as the El Niño72

Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) (McCabe et73

al., 2004; Hoerling et al., 2009; Seager et al., 2015; Cook et al., 2016). Interspersed across74

the past two centuries, California has also experienced several extreme precipitation events75

(e.g., 1908-1909, 1913-1914, 1940-1941, 1955-1956, 1969, 1986, and 1997); most promi-76

nently the Great Flood of 1861-62 that turned the San Joaquin and Sacramento Valleys77

into an inland sea (M. D. Dettinger & Ingram, 2013). This event notably occurred af-78
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ter a 20-year drought (Null & Hulbert, 2007). Sediment reconstructions in the Klamath79

Basin suggest that the 1861-1862 megaflood was not an extreme outlier, but rather a 100-80

200-year event that has been matched in magnitude several times over the last two mil-81

lennia (e.g., 212, 440, 603, 1029, 1300, 1418, 1605, 1750, and 1810 CE; M. D. Dettinger82

and Ingram (2013)).83

The historic droughts and floods above, independent of anthropogenic-related warm-84

ing, confirm the strong influence of natural climate variability in California and more broadly85

across the Western U.S. However, recent studies show that climate change is amplify-86

ing the severity of these extremes. Warming due to anthropogenic radiative forcing has87

intensified recent droughts in the region, primarily through enhanced atmospheric mois-88

ture demand and soil moisture depletion (A. P. Williams et al., 2020). As noted above,89

the recent cumulative drought conditions in California and the rest of the Western U.S.90

over the past two decades now ranks as the driest 22-year period in at least 1,200 years91

(A. P. Williams et al., 2022). Similarly, climate change is increasing the risk of extreme92

precipitation events via an increase in the strength of cool-season AR events associated93

with a rise in atmospheric moisture content (Kunkel, 2003; Kirchmeier-Young & Zhang,94

2020). A recent study by X. Huang and Swain (2022) found that climate change has al-95

ready doubled the likelihood of AR-driven megastorms similar to that which caused the96

Great Flood of 1861-62, and that megastorm sequences of increased frequency and larger97

magnitude are likely with continued warming.98

Thus, the present and evolving risks posed by hydrologic extremes in California is99

defined by the combined influence of natural climate variability and anthropogenic cli-100

mate change. Yet the degree to which these two factors will control the future frequency101

and magnitude of extremes remains uncertain (Hamlet & Lettenmaier, 2007; Siler et al.,102

2019; Bass et al., 2022). From the perspective of water resource decision-makers who are103

charged with planning and managing large-scale infrastructure to mitigate the impacts104

of extreme events, this ambiguity presents a significant challenge. If climate change is105

the dominant factor that will determine the future magnitude, frequency, and duration106

of extreme events, then resources and attention should be concentrated on identifying107

and narrowing the uncertainty of the most prominent climate change signals and prop-108

agating them into updated design event estimates used for planning. However, if nat-109

ural variability plays an equal or larger role in determining the properties of hydrologic110

extremes relevant to engineering design, then research into the plausible range of extremes111
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due to natural variability should be equally prioritized (e.g., see Koutsoyiannis (2021)).112

A greater role of natural variability also suggests that dynamic and reversible adapta-113

tions may be favorable over irreversible investments. It is thus critically important to114

quantify the relative and joint roles of climate change versus natural variability in shap-115

ing the characteristics of hydrologic extremes, to help balance the allocation of atten-116

tion and resources in a way that best serves the water sector to prepare for future ex-117

treme events.118

A growing body of work has sought to partition the relative effects of climate change119

and natural variability, with a focus on climate variables and in the context of multi-model120

ensemble simulations (Hawkins & Sutton, 2009; Yip et al., 2011; Knutti et al., 2017; Row-121

ell, 2012; Lehner et al., 2020). These studies primarily attribute variability in projected122

global and regional temperature and precipitation to climate change scenario uncertainty,123

global climate change model (GCM) uncertainty, and natural variability. Lehner et al.124

(2020) shows that scenario and model uncertainty are the dominant drivers of global decadal125

mean annual temperature and precipitation, but that natural variability dominates pro-126

jections of regional temperatures (in Southern Europe) and precipitation (in the U.S. Pa-127

cific Northwest and Sahel region), particularly at shorter (and more decision-relevant)128

time scales. Fewer studies have explicitly considered the role of natural climate variabil-129

ity when partitioning variance in projections of hydrologic and water systems variables130

(Kay et al., 2009; Jung et al., 2011; Vidal et al., 2015; Whateley & Brown, 2016; Schlef131

et al., 2018; Cai et al., 2021). Kay et al. (2009) found that flood frequency and winter-132

time runoff in Europe are mostly influenced by choice of GCM, although they quanti-133

fied natural climate variability using a limited number of GCM integrations with differ-134

ent initial conditions. Vidal et al. (2015) found that natural variability highly influences135

low flows in snow-dominated catchments in the French Alps, and Cai et al. (2021) found136

that natural variability is a dominant driver of rainy season runoff in Northeastern China.137

Jung et al. (2011) quantified natural variability using a block bootstrap on the histor-138

ical record and found it to have the largest impact on the variance of large floods, as com-139

pared to GCM structure, emission scenario, land use change scenario, and hydrologic model140

parameter uncertainty. Similarly, Whateley and Brown (2016) and Schlef et al. (2018)141

created ensembles of future streamflow projections with a stochastic weather generator142

and rainfall-runoff model and found that the variance of reservoir storage as well as wa-143
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ter system performance measures is mostly driven by natural climate variability, partic-144

ularly in the first few decades of the projections.145

The relative roles of natural variability and climate change on the variance of hy-146

drologic variables of interest often depends on how natural variability is quantified and147

propagated into an ensemble of projections. In a majority of the climate studies (Hawkins148

& Sutton, 2009; Yip et al., 2011; Knutti et al., 2017; Rowell, 2012; Lehner et al., 2020)149

and three hydrologic studies (Kay et al., 2009; Jung et al., 2011; Vidal et al., 2015) ref-150

erenced above, natural variability was determined using multi-member ensembles of GCMs151

run with different initial conditions. However, the degree to which initial-condition en-152

sembles can represent true natural climate variability is unclear (Deser et al., 2020). For153

instance, these models poorly represent regional precipitation and drought persistence154

(Rocheta et al., 2014; Moon et al., 2018) and underestimate AR moisture flux and fre-155

quency (Zhou & Kim, 2018) all of which are important to regional planning and man-156

agement of water systems. While the recent generation of models in CMIP6 better rep-157

resents key features of natural climate variability (e.g., blocking; major climate modes)158

compared to older generations, significant biases remain (Tatebe et al., 2019; Schiemann159

et al., 2020)160

An alternative way to estimate the relative influence of natural variability and cli-161

mate change on regional hydrologic response is through bottom-up approaches that em-162

ploy stochastically generated ensembles (Dessai & Hulme, 2004; Wilby & Dessai, 2010;163

Nazemi & Wheater, 2014). These methods require synthetic generators trained on ob-164

served weather or hydrologic records, which can generate large ensembles of scenarios165

that extrapolate beyond the observation limits of the historical record, maintain phys-166

ical plausibility, and embed climate changes into the ensemble. The generation and par-167

titioning of variability in the resulting hydroclimate metrics can provide a more robust168

way to quantify how much variance in regional hydrologic extremes is driven by climate169

changes versus natural variability. However, the availability of stochastic models to sup-170

port these analyses is limited, particularly when interested in the variance decomposi-171

tion of multiple properties of different hydrologic extremes (i.e., magnitude, duration,172

frequency, and spatial coherence of floods and droughts). Furthermore, the ways in which173

flood and drought events are defined, and particularly the time horizon (moving window)174

over which they are defined, can influence how the relative influences of climate variabil-175

ity and change are perceived. As time horizon shortens, it becomes increasingly difficult176
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to identify clear climate change signals amongst the noise of natural climate variability.177

For example, Lehner et al. (2020) attributed the vast majority of variance in winter pre-178

cipitation projections over the US Pacific Northwest to natural climate variability, but179

this was based on a 10-year moving window (i.e., decadal average). It is possible that180

any climate change impacts on mean winter precipitation, even if present, are not dis-181

cernable from the noise within such a short moving window. This issue is especially true182

for the properties of extreme events, because there are so few samples available from which183

to estimate signal from noise (even with many ensemble members). To date, it remains184

unclear how the choice of time horizon influences our understanding of the relative roles185

of natural climate variability and climate change on the uncertainty in hydrologic ex-186

tremes.187

Based on the above knowledge gaps, this study addresses the following questions:188

1. What is the relative importance of natural variability and climate change on vari-189

ability in decision-relevant drought and flood metrics for the Central Valley of Califor-190

nia?191

2. How does the selected scale of the time horizon used for analyses influence the192

perceived importance of these drivers?193

To answer these questions, we contribute a framework for creating a regionally con-194

sistent ensemble of plausible daily future climate and streamflow scenarios that repre-195

sent natural climate variability captured in a network of tree-ring chronologies, and then196

embed anthropogenic climate change trends within those scenarios. A key contribution197

of this study is the use of 600 years of paleo-informed weather regimes (WRs; Gupta et198

al. (2022)) to force a weather-regime based stochastic generator (Steinschneider et al.,199

2019; Najibi et al., 2021), which we develop for five watersheds in the San Joaquin River200

basin. To assess the compound effect of climate change, we create temperature series that201

reflect projected scenarios of warming and precipitation series that have been scaled to202

reflect thermodynamically driven shifts in the distribution of daily precipitation. We then203

use these weather scenarios to force hydrologic models for each basin, generating ensem-204

bles of streamflow across the region. Decision relevant hydrologic metrics for character-205

izing flood and drought conditions are defined and calculated across San Joaquin sub-206

basins and across the paleo-period using time horizons of varying scale (see Appendix207

B). Variance decomposition is then employed to characterize the relative contributions208
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of natural variability and climate changes as drivers of flood and drought hazards in in-209

dividual subbasins and for spatially compounding extremes that emerge across groups210

of subbasins.211

2 Data and Methods212

New Hogan Lake
(Calaveras River)

New Melones Reservoir
(Stanislaus River)

La Grange Dam 
(Tuolumne River)

Millerton Lake
(San Joaquin River)

Merced Falls
(Merced River)

Figure 1. The study area is comprised of five subbasins within the greater San Joaquin River

basin.

This study focuses on five subbasins within the San Joaquin River basin (Figure213

1): the Tuolumne River, the Merced River, the San Joaquin River, the Stanislaus River,214

and the Calaveras River. The ultimate goal of this study is to partition the effects of nat-215

ural climate variability and climate change on different properties of floods and droughts216

across these watersheds. We contribute a five-step methodology in order to achieve this217

goal (Figure 2). We first create a novel method to incorporate reconstructed weather regime218
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dynamics (Gupta et al. 2022) into the generation of daily weather through the paleo-219

period (Section 2.1). Then, we create 600 years of surface weather ensembles across the220

five subbasins of the San Joaquin conditioned upon these reconstructed dynamics. We221

also create additional ensembles of surface weather layered with thermodynamic climate222

changes, such as temperature trends and precipitation scaling (Section 2.2).223

1 2 3

Generation of Multi-Basin 
Hydrologic Ensembles

Creation of 
Multi-Basin Weather

Ensembles Across
San Joaquin Valley

Incorporation of  Reconstructed
Dynamics into Synthetic Weather 

Generation

Methodology

Calculation of Basin-Speci�c
and Joint-Basin Flood and Drought

Metrics

Section 2.1 Section 2.2 Section 2.3

Section 2.4 Section 2.54 5

Analysis of Variance
of Key Metrics

Figure 2. The main methodological components of this study. Reconstructed weather regime

dynamics are used to drive weather simulations across the San Joaquin valley that also embed

signals of thermodynamic climate change. Ensembles of generated surface weather are used

to force hydrologic models to develop streamflow ensembles. Metrics pertaining to flood and

drought extremes are calculated throughout the simulation period across basins and ensemble

members, and an ANOVA decomposition is used to partition the variance of each metric across

the ensemble into variance contributions from thermodynamic climate changes and natural vari-

ability.

These ensembles are forced through hydrologic models (SAC-SMA and HYMOD)224

calibrated for each subbasin to generate ensembles of daily streamflow (Section 2.3). From225
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these streamflow ensembles, we calculate flood and drought metrics, including copula-226

based metrics to quantify joint flood hazard across basins (Section 2.4). Finally, anal-227

ysis of variance (ANOVA) is used to partition the contribution of natural variability and228

the imposed climate changes to variability in the different flood and drought metrics con-229

sidered (Section 2.5).230

2.1 Reconstruction of WR Dynamics231

Ensembles of plausible future climate are generated using our extensions of the WR-232

based stochastic weather generator presented in Steinschneider et al. (2019) and Najibi233

et al. (2021) to incorporate paleo-reconstructions of WRs. The generator is comprised234

of a three-step hierarchical structure (Figure 3): (1) identification and simulation of WRs235

that define large-scale patterns of atmospheric flow across the entire Western U.S., (2)236

simulation of local weather conditioned on the WRs, and (3) perturbations to the sim-237

ulated weather reflective of thermodynamic climate change. This study extends step (1)238

to utilize reconstructed WRs created in Gupta et al. (2022). In that study, a multi-objective239

optimization and regression-based framework was used to reconstruct the annual frequency240

of five dominant Western U.S. weather regimes back to 1400 CE based on a gridded, tree-241

ring based reconstruction of cold season precipitation developed by A. P. Williams et al.242

(2020) and extended in Borkotoky et al. (2021). Specifically, the first four principal com-243

ponents of annual weather regime occurrence were reconstructed (termed PCWR in Gupta244

et al. (2022)), which effectively contained all of the information on the annual frequen-245

cies of the five WRs. In this study, these principal components are used to force a non-246

homogeneous hidden Markov model (NHMM), whereby WR states are modeled as a first-247

order Markov chain with a non-stationary transition probability matrix conditioned on248

the reconstructed PCWR from Gupta et al. (2022). The NHMM is fit to the first nine249

principal components of daily 500 hPa geopotential height from NOAA-CIRES-DOE Twen-250

tieth Century Reanalysis (V3) dataset (Slivinski et al., 2019) between 180-100°W and251

30-60°N (i.e., the Pacific/North American sector) from 1950-2017. The NHMM is forced252

with the four reconstructed principal components (PCWR) that overlap the same time253

period, defining a time-varying transition probability matrix shown in Equation 1:254

P (WRt = i|WRt = j,Xt = x) =
exp(β0j,i + β′

j,ix)∑K
k=1 exp(β0j,i + β′

j,ix)
(1)
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Here, the transition probability from WR i to WR j at time t is conditioned on X′
t =255

[PCWR1,t
, PCWR2,t

, PCWR3,t
, PCWR4,t

] a vector of daily covariates developed by repeat-256

ing the annual values of each for each day of the year. These covariates (Level 1 in Fig-257

ure 3) are used within a multinomial logistic regression with intercepts β0j,i and coef-258

ficients βj,i to define the transition probabilities, with a prime denoting the vector trans-259

pose. The fitted multinomial regression can be used to estimate the time-varying tran-260

sition probabilities and simulate WRs across the entire 600-year period over which re-261

constructed values of PCWR are available. More information on the NHMM can be found262

in Section S1. We use this method to create a 50-member ensemble of daily, 600-year263

weather regime time series (Level 2 in Figure 3; convergence plots of corresponding stream-264

flow available in Figure S1).265

Time 1 Time 2 Time t Time n

... ...

... ...

... ...

P1,T1 P2,T2 Pt,Tt Pn,Tn

WR1 WR2 WRt WRn

X1 X2 Xt
Xn

Surface 
Weather
(Level 3)

Weather
Regime
(Level 2)

Gupta et al. 
(2022) PCWR
(Level 1)

Thermodynamic
Climate Changes

Figure 3. Flow chart of the main components of the weather generator. Boundary forc-

ing variables (here the PCWR from Gupta et al. (2022)) influence the evolution of the discrete

weather regime time series. Surface weather is then conditioned upon the weather regime time

series. Thermodynamic climate changes (temperature increases and precipitation-temperature

scaling) are applied to the surface weather post-generation.

2.2 Generation of Local Surface Weather Conditioned on WRs266

Time series of daily surface weather are generated based on the simulated time se-267

ries of WRs (Level 3 in Figure 3). Here, observed daily precipitation, minimum, and max-268

imum temperature are taken from the 1/16° resolution gridded meteorological dataset269

of Livneh et al. (2015) for water years (WY) 1950-2013. These historical weather data270
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are block bootstrapped based on the sequence of simulated WRs to create new sequences271

of weather. For example, if the NHMM simulates a sequence of n consecutive days in272

WR i, an n-sized block of surface weather is resampled from the historical period that273

is also in WR i and that meets two other criteria: (1) the chosen historical block falls274

into a two-week window around the simulated day of the year; and (2) the day prior to275

the historical block is in the same precipitation state as the simulated day (wet or dry).276

The weather generator is run simultaneously across the five basins to create internally277

consistent (i.e., spatially correlated) weather across the region. Given their large syn-278

optic scale, we use the occurrence of an atmospheric river (taken from Gershunov et al.279

(2017)) to represent a common precipitation state across basins. The process is repeated280

for each ensemble until a full sequence of 600 years of daily minimum and maximum tem-281

perature and precipitation has been generated.282

Thermodynamic changes, in the form of shifts in temperature and precipitation scal-283

ing with warming, are imposed after surface weather is generated. Step changes in tem-284

perature between 0-4°C are added to each grid cell’s simulated temperature. Quantile285

mapping is used to scale the precipitation distribution with warming, whereby the up-286

per tail (99.9th percentile) of the non-zero precipitation distribution is made more in-287

tense, the lower tail of non-zero precipitation is suppressed downward, but the mean of288

daily precipitation is left unchanged. This scaling reflects an intensification of the pre-289

cipitation regime and is consistent with GCM-based projections of future precipitation290

in California (Michaelis et al., 2022). We consider 5 different scaling rates equivalent to291

0X (0% ◦C−1), 0.5X (3.5% ◦C−1), 1X (7% ◦C−1), 1.5X (10.5% ◦C−1), and 2X (14%292

◦C−1) the Clausius-Clapeyron (CC) scaling rate, which dictates how the moisture hold-293

ing capacity of the atmosphere scales with warming. That is, the 99.9th percentile of non-294

zero precipitation is scaled up by either 0% ◦C−1, 3.5% ◦C−1, 7% ◦C−1, 10.5% ◦C−1,295

or 14% ◦C−1, while the lower body of the distribution is scaled down accordingly to main-296

tain the same distribution mean. The range of selected scaling rates are derived from297

observational and model-based studies that most often indicate extreme precipitation-298

temperature scaling at the 1XCC rate, but occasionally suggest the possibility for sub-299

CC (0X, 0.5X) or super-CC (1.5X, 2X) scaling rates due to interactive effects between300

enhanced specific humidity and storm dynamics (Wasko et al., 2018; Martinkova & Ky-301

sely, 2020; Ali et al., 2022; Michaelis et al., 2022; Sun & Wang, 2022).302
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These scaling rates are combined with the different scenarios of warming, so that303

precipitation scaling is tied to the imposed temperature scenario and respects the ther-304

modynamic mechanism that drives precipitation change. We consider five scenarios of305

warming, including 0°C, 1°C, 2°C, 3°C, and 4°C above the climatological average. This306

range of warming was inferred from an ensemble of CMIP6 mid-century (2015-2050) pro-307

jections over central California under the SSP2-4.5 scenario, taken from CarbonPlan (see308

Figure S2; Chegwidden et al. (2022)). All together, we develop 25 different scenarios of309

climate change (5 temperature scenarios and 5 scaling scenarios), with each scenario con-310

taining 50 ensemble members (i.e., 50 stochastic 600-year time series of precipitation and311

temperature), in addition to a baseline ensemble with no changes imposed. Technical312

details on the quantile mapping procedure, and other details of the stochastic weather313

generator, are provided in Steinschneider et al. (2019) and Najibi et al. (2021).314

2.3 Generation of Regional Streamflow Through Process-Based Hydro-315

logic Models316

Surface weather ensembles are used to simulate daily streamflow ensembles at the317

mouth of each of the five San Joaquin subbasins using the Sacramento Soil and Mois-318

ture Accounting Model (SAC-SMA) (Burnash et al., 1995) coupled with a SNOW-17 model319

(Anderson, 1976). The models, documented in Wi and Steinschneider (2022), are spa-320

tially distributed and utilize a Lohmann routing model Lohmann et al. (1998) to trace321

runoff from hydrologic response units (HRUs) through each river channel. The SAC-SMA322

models are calibrated using a pooled calibration approach (Wi et al., 2015) based on the323

average Nash Sutcliffe Efficiency (NSE) across the five subbasins simultaneously. Cal-324

ibration and evaluation was based on historical Full Natural Flows (FNF) between WY325

1989-2013, acquired from California Data Exchange Center (CDEC) FNF stations that326

lie within each subbasin: Tuolumne River at La Grange Dam (TLG), Friant Dam on Miller-327

ton Lake (MIL), Merced River near Merced Falls (MRC), New Hogan Lake (NHG), and328

New Melones Reservoir (NML) (G. Huang & Kadir, 2016). The models are calibrated329

over WY 1989-2003 and then evaluated across WY 2004-2013.330

To verify that our streamflow extremes and variance decomposition results are not331

strongly dependent on the selection of the SAC-SMA model, we also employ the HY-332

MOD conceptual hydrologic model (HYMOD; (Moore, 2007)) specifically in the Tuolumne333

Basin. Our primary results will be presented using the SAC-SMA model but more de-334
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tailed analysis of how hydrologic model selection impacts the estimates of flood and drought335

metrics as well as their partitioning of variance is provided in Section S2. More infor-336

mation about the calibration process and parameter values for all hydrologic models can337

be found in Wi and Steinschneider (2022).338

2.4 Metrics of Hydrologic Extremes339

A series of flood and drought metrics, described below, are calculated for each en-340

semble member and each climate scenario and across two time horizons: 30 and 100 years.341

As stated in the latest update to the Central Valley Flood Protection Plan (CVFPP),342

the state of California is actively prioritizing investments in flood management over a343

30-year planning horizon (California Department of Water Resources, 2022). A 100-year344

planning horizon is not actively used in the CVFPP, but it represents a time scale rel-345

evant to longer term major infrastructure investments. Further, it allows the exploration346

of the longer climate time horizon drivers. We partition the variance of each metric be-347

tween the drivers of climate change and natural climate variability using the ensemble348

of scenarios described above. Appendix A contains a glossary with commonly used terms349

that are referred to through the methods. Appendix B contains a summarized list of all350

of the flood and drought metrics used in this study, including their decision relevance.351

2.4.1 Flood Metrics352

Flows associated with a 10-year and 100-year return period are used as flood met-353

rics in this study. The 100-year floodplain currently drives larger riverine infrastructure354

development and flood risk management in California (California Department of Wa-355

ter Resources, 2022). Though not as common for current planning and management in356

California, the 10-year return period flow captures risk to smaller floodplains and drives357

smaller investments (California Department of Water Resources, 2006). The decadal and358

centennial flood are estimated by fitting a generalized extreme value (GEV) distribution359

to the three-day annual maxima at each CDEC gauged location in the five subbasins.360

The three-day flood was chosen because it a common metric used in flood risk assess-361

ments in California (California Department of Water Resources, 2006; Chung, 2009; Brekke362

et al., 2009; Maurer, Brekke, & Pruitt, 2010; Maurer, Hidalgo, et al., 2010), and because363

it better captures the concurrence of flooding across multiple basins (described further364
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in section 2.4.3). For each ensemble member, we fit the GEV distribution for the whole365

600-year paleo-period as well as across smaller 30-year and 100-year moving windows.366

2.4.2 Drought Metrics367

There is no state statutory definition of drought since it can be classified differently368

across impacted sectors and stakeholders. Historical hydrologic droughts have been tra-369

ditionally identified based on a combination of metrics that capture the magnitude and370

duration of water deficit at key reservoirs (California Department of Water Resources,371

2015). Since we develop metrics for gauged locations near these reservoirs, we opt to use372

a more generalized Standardized Streamflow Index (SSI) to quantify hydrologic drought373

(Vicente-Serrano et al., 2012). To calculate the SSI, daily simulated flows are first ag-374

gregated to a monthly time step. We then use a flexible non-parametric empirical method375

to estimate non-exceedance probabilities using the Gringorten plotting position (see Farahmand376

and AghaKouchak (2015)). To create the SSI, the associated non-exceedance probabil-377

ities are passed through the quantile function of the standard normal distribution, re-378

sulting in a series with an assumed mean of zero and standard deviation of one. We then379

use the SSI index to define three drought metrics, following McKee et al. (1993):380

1. Drought Occurrence: The number of months characterized by an SSI value less381

than -1, divided by the total months in the window over which the metric was calculated.382

An SSI value of less than -1 captures moderate to severe drought hazard.383

2. Drought Intensity: The minimum SSI value in the moving window.384

3. Drought Duration: The maximum number of consecutive months with an SSI385

below -1.5 in the moving window. An SSI value of less than -1.5 captures severe drought386

hazard.387

The SSI index is calculated for each ensemble member and climate change scenario,388

and the metrics are reported across 30-year and 100-year moving windows.389

2.4.3 Copula-Based Flooding Metrics390

The San Joaquin basin is a key component in the state’s comprehensive water de-391

livery system, and a levee breach due to compounding flooding across subbasins in the392

region could disrupt deliveries of irrigation water to 3 million acres of farmland in the393

–15–



manuscript submitted to Earth’s Future

Central Valley (Taylor, 2017). Thus, we develop a spatially-compounding flood metric394

to capture this hazard. As discussed in Zscheischler et al. (2020), spatially compound-395

ing flood hazard can be characterized using an n-dimensional Gaussian copula that de-396

fines a metric of joint flood hazard across n basins simultaneously. Let xt,1,. . . , xt,n be397

the annual maxima of 3-day mean streamflow in each of the n basins in year t. We first398

fit GEV distributions to the individual three-day annual maxima for each basin (i =399

1, . . . , n). The three-day annual maxima in each year t are then transformed to be uni-400

form pseudo-observations, ut,i = F−1
GEV (xt,i) , where F−1

GEV is the inverse cdf of the fit-401

ted GEV distribution for basin i. These pseudo-observations are used to evaluate the402

joint CDF of the flood data based on a Gaussian copula:403

C(ut,1, ..., ut,n) = P (U1 ≤ ut,1, ..., Un ≤ ut,n) = Φn(ϕ
−1(ut,1), ..., (ϕ

−1(ut,n)|Σ) (2)

Here, ϕ−1 is the inverse CDF of the standard normal distribution and Φn(·|Σ) is404

the multivariate normal CDF with zero mean and correlation matrix Σ, which is set equal405

to the Spearman rank correlation matrix for three-day annual maxima across basins. Us-406

ing the fitted copula, we can then calculate the joint probability that multiple subbasins407

experience flooding above some threshold. For example, consider two subbasins with 100-408

year flood magnitudes of x1 and x2, respectively, inferred from their fitted (GEV) marginal409

distributions. Then, the probability that both subbasins simultaneously experience floods410

that exceed the 100-year flood is equal to (Zhang & Singh, 2019):411

P (X1 > x1, X2 > x2) = 1− P (X1 ≤ x1)− P (X2 ≤ x2) + P1,2(X1 ≤ x1, X2 ≤ x2) =

1− FGEV 1(x1)− FGEV 2(x2) + Φn(ϕ
−1(FGEV 1(x1)), ϕ

−1(FGEV 2(x2))|Σ) (3)

Similar calculations are available to evaluate the probability that three or more basins412

experience flooding above set thresholds. These probabilities can be used directly as a413

metric of joint flood hazard, and we can partition the variance of this metric between414

climate changes and natural variability across our ensemble and for 30-year and 100-year415

moving windows.416
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2.5 Analysis of Variance in Hydrologic Metrics417

We use an ANOVA to partition the variance in the hydrologic flood and drought418

metrics above into components attributable to different sources of variation. A two-way419

ANOVA was used to determine the uncertainty in hydrologic metrics attributable to un-420

certainty in temperature change (T ), precipitation scaling rate (P ), their interactions,421

and uncertainty in metrics attributable to natural variability. The temperature change422

factor has i = 1, . . . , 5 levels (0, 1, 2, 3, 4 ◦C), and precipitation scaling factor has j=1,. . . ,5423

levels (0%, 3.5%, 7%, 10.5%, 14% per °C). For each combination of levels, there are 50424

stochastic realizations of the metric of interest. The linear model on which the ANOVA425

is based is given as:426

x(i, j, s) = µ+ α(i) + β(j) + γ(i, j)TP + ε(i, j, s) (4)

Where x(i, j, s) is the hydrologic metric for a given level i and j of factors T and427

P , respectively, and a given ensemble member s. The grand mean for the metric x across428

the entire ensemble is µ; α(i) equals the average deviation in x from µ for ensemble mem-429

bers with temperature changes at level i; β(j) equals the average deviation in x from µ430

for ensemble members with precipitation scaling rate at level j; γ(i, j)TP is the inter-431

action term between temperature change and precipitation scaling; and ε(i, j, s) is the432

error term, which is used here to represent natural variability in the metric not explained433

by the different climate change factors. The total sum of squares SStotal expresses the434

total variation in the hydrologic metric x, and is comprised of the sum of variation at-435

tributable to temperature change (SST ), precipitation scaling rate (SSP ), their inter-436

action (SSInt), and natural variability (SSε):437

SStotal = SST + SSP + SSInt + SSε (5)

The fraction of variance attributable to each source is calculated by dividing each438

component by SStotal. This fraction of attributable variance is calculated separately in439

30-year and 100-year rolling windows for each of the metrics above.440
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3 Results441

The results of this work are presented as follows. First, Section 3.1 shows a com-442

parison of the variability in the paleo-informed streamflow with events from the avail-443

able observed historical record. Then, Section 3.2 shows the flood and drought extremes444

reconstructed for the baseline scenario (i.e., influence of natural variability alone). Sec-445

tion 3.3 demonstrates how the imposed climate changes affect those extremes. Section446

3.4 demonstrates the variance partitioning of extremes across climate change and nat-447

ural variability. A more detailed evaluation of the stochastic weather generator’s per-448

formance is presented in the Supporting Information (see Figures S3-S7), which demon-449

strates how well the generator captures characteristics of precipitation and minimum and450

maximum temperature.451

3.1 Paleo-Informed Streamflow Characteristics452

Figure 4 demonstrates the broader variability that is attained in the streamflow453

ensembles when SAC-SMA is forced with paleo-reconstructed weather at the Don Pe-454

dro gauge in the Tuolumne Basin. Figure 4a focuses on 7-day flows and the lower tail455

of the distribution and Figure 4b zooms in on the upper tail distribution of 3-day flows.456

Each grey line represents sorted flow volumes across 30-year chunks of the paleo-reconstruction457

across all 50 ensemble members. These volumes are compared with those that come from458

forcing the generator over the modern period (1987-2013) with historical Livneh precip-459

itation and temperature data (red line). Key events from the observed record are an-460

notated as colored horizontal lines. Overall, the paleo-informed streamflow envelopes and461

expands upon the historical SAC-SMA model flows by creating instances of wetter 3-462

day flows and drier 7-day flows. Furthermore, the paleo-ensemble is characterized by drier463

events than key drought periods from the observed record as demonstrated in Figure 4a.464

The generator is unable to create 3-day flows that reach the peak of the 1997 New Year’s465

flood period due to underestimation of precipitation associated with this storm that is466

a known error in the Livneh dataset (Pierce et al., 2021). In turn, models conditioned467

on the Livneh dataset tend to underestimate the flows associated with this event. How-468

ever, the inclusion of the paleo-reconstruction allows the generator to create flows that469

far surpass the magnitude of peak flows associated with the 1995 and 2017 floods. Over-470

all, the expanded envelope of daily scale streamflows enabled by the paleo-reconstruction471

provide rich context for exploring plausible flood and drought extremes in the Tuolumne472
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Basin. Figure S9 demonstrates similar results for the rest of the San Joaquin River basins,473

particularly in capturing drought dynamics. The generator conditioned on the Livneh474

dataset suffers from the same difficulty of capturing the 1997 flood peak flows; however,475

in some basins like Merced and Millerton, the paleo-conditioned generator provides ex-476

tended variability that can help overcome these limitations (Figures S9b,d). New Hogan477

Lake is the only gauged location in which the Livneh-conditioned model can capture the478

1997 flood peak flows, but this is primarily because the associated peak flows were not479

as extreme in this region relative to other notable flooding events. Of the five basins, cap-480

turing dynamics in the Tuolumne is the most challenging; it is also representative of high-481

elevation basins that exhibit rich snow dynamics. Thus, we proceed through the rest of482

the results with a focus on the Tuolumne Basin, though corresponding figures for the rest483

of the basins can be found in the supplement. Section 3.2 further elaborates on the value484

of the paleo-forced generator and its representation of key flood and drought metrics through485

the reconstruction.486

a) b)

1997 Flood (Day 2)

1997 Flood (Day 1)

1997 Flood (Day 3)

2017 Flood Peak Flow 

1995 Flood Peak Flow

2002-2003, 1986-1992 Droughts

2012-2016 Drought

Figure 4. a) 7-day and b) 3-day flow volumes at the Don Pedro gauge in the Tuolumne Basin

derived from the paleo-informed streamflow ensembles compared to the Livneh-forced generator

over the modern period. Key events from the observed record are shown as colored lines. Each

grey line represents sorted volumes for each year in 30-year chunks of the paleo-reconstruction

across all 50 ensemble members.

3.2 Reconstruction of Natural Variability in Extremes487

3.2.1 Individual Basin Flood Hazards488

The individual Tuolumne subbasin flood hazard is quantified based on the 10-year489

and 100-year flood events associated with 3-day annual maximum flows, calculated us-490
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ing a GEV distribution fit to 3-day maxima in each basin and with two moving windows491

of length 30 and 100 years. Figures 5a and 5c show these return levels at the Don Pe-492

dro gauge in the Tuolumne Basin using a 30-year moving window. The return levels are493

calculated for all ensemble members of the baseline generator, where the solid line rep-494

resents the mean return level across the ensemble members and the shading represents495

the 5th/95th percentiles. Figures 5b and 5d are non-exceedance plots of the three-day496

annual maxima across the extent of the paleo-reconstruction ensemble. The dashed black497

line represents the three-day annual maxima associated with the 10-year and 100-year498

return period events as derived from the SAC-SMA model forced with Livneh histori-499

cal precipitation and temperature that overlaps with the observed record (1987-2013).500

In order to facilitate the most equivalent comparison between the two datasets, each gray501

line represents the sorted three-day annual maxima volumes over sets of 30-year segments502

of the paleo-reconstruction and across all 50 ensemble members.503

The return levels in Figures 5a,c both show clear peaks centered around 1600 CE,504

which highlights a prominent pluvial period in the region’s past hydroclimate. This plu-505

vial is represented in the original WR reconstruction from Gupta et al. (2022) and broadly506

confirmed by other reconstructions (D’Arrigo & Jacoby, 1991; Schimmelmann et al., 1998;507

Stahle et al., 2007; M. D. Dettinger & Ingram, 2013). M. D. Dettinger and Ingram (2013)508

have also reconstructed pluvials around 1750-70 CE and 1810-20 CE, and while less pro-509

nounced than the 1600s pluvial, both panels a) and c) show increases in three-day an-510

nual maxima during these times. When compared to the model-based modern hydrol-511

ogy (dashed black line), both figures suggest that return levels in the most recent 30-512

year period are lower than those that have been experienced in prior centuries of the paleo-513

period reconstruction. Panels b) and d) show the modern estimates of the three-day an-514

nual maxima for the 10-year and 100-year events respectively, in comparison with the515

extent of the three-day annual maxima created by the paleo-informed generator. The516

ensemble from the generator encompasses the modern estimates of the return levels and517

also provides many instances of more extreme flooding events, which provides additional518

challenging flood scenarios that can be used to understand the vulnerability of water sys-519

tems in each of the Central Valley subbasins explored in this study. As shown in Fig-520

ure S10, the rest of the basins display similar three-day annual maxima dynamics, though521

the magnitude of the flows differs across all basins and return periods. Lower peak flows522

tend to be associated with basins that are smaller in area, elevation, and slope (i.e., New523
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10-Year Event 

100-Year Event 

a)

c)

b)

d)

Paleo-Forced
Livneh-Forced

Paleo-Forced
Livneh-Forced

Figure 5. Three-day annual maxima associated with the a) 10-year return period event and

c) 100-year return period event for the Don Pedro gauge in the Tuolumne subbasin calculated

in 30-year moving windows and across the time period from 1400-2017. The dark green line rep-

resents the mean flooding return levels and the shading represents the 5th and 95th percentile

confidence bounds. Panels b) and d) are non-exceedance plots of the three-day annual maxima

across the extent of the paleo-reconstruction ensemble. Each gray line represents the sorted

three-day annual maxima volumes for each year in a 30-year segment of the paleo-reconstruction.

The dashed black line represents the three-day annual maxima associated with the 10-year and

100-year return period events as derived from the SAC-SMA-simulated peak flows when forced

with Livneh historical data (1987-2013).

Hogan Lake, Table S1). The ensemble member spread also tends to be larger for the more524

extreme and uncertain 100-year flood event. Panels a) and c) exhibit clear non-stationary525

tendencies in the representation of the 10-year and 100-year event across the reconstruc-526

tion that have large implications for hazard characterization. For example, the flow vol-527

umes associated with the 10-year event during the 1600s wet period are within range of528

the 100-year event flows during the 1500s megadrought period. Thus, what may be con-529

sidered a 10-year flood event in one wet period transitions to be a 100-year event in a530

–21–



manuscript submitted to Earth’s Future

dry period. This extent of variability uncovered in the flood metric demonstrates that531

using only the modern record to define design flood events could severely under-represent532

flood hazard in the Central Valley region and that defining hazard based off of the 10-533

year and 100-year flooding events has drastically changed over time.534

3.2.2 Individual Basin Drought Hazards535

Figures 6a,c,e show the three SSI-based hydrologic drought metrics (occurrence,536

duration, and severity) calculated across a 30-year moving window for the period of 1400-537

2017 for the Don Pedro gauge in the Tuolumne River Basin. Figures 6b,d,f are non-exceedance538

plots, where each line corresponds to the sorted drought metric values derived across the539

whole reconstructed 617-year record length for each of the 50 ensemble members. The540

dashed line represents the respective metric values derived from the SAC-SMA model541

flows forced with Livneh historical precipitation and temperature across the length of542

the modern record. Similar to the flooding metrics in Section 3.2.1, the drought met-543

rics exhibit clear decadal-scale variability that is also present in the original WR recon-544

struction from Gupta et al. (2022). For example, Figures 6a,c,e show declines in drought545

occurrence, severity, and duration during the early 1600s pluvial, while these drought546

characteristics become more intense during the 1500s megadrought that lasted from the547

middle of the century to the late 1580s (Stahle et al., 2007). The rest of the San Joaquin548

subbasins display this key behavior as well (Figure S11). The drought metrics reveal a549

slight long-term trend toward higher drought occurrence, longer duration, and more in-550

tense drought severity through the last three centuries of the reconstruction. This trend551

could, in part, be driven by key persistent drought periods that occurred in the mid to552

late 1800s (1856-1865, 1870-1877, and 1890-1896; Herweijer et al. (2006)), the 1900s (the553

Dust Bowl in the 1930s and drought periods in the 1950s and late 1980s; (Stahle et al.,554

2007)) and the most recent 20-year drought periods in the 2000s. The black line demon-555

strates drought occurrence and severity that is on par with the late 1500s megadrought,556

though exhibiting a slightly shorter duration than a large section of the paleo-reconstruction.557

The shorter drought duration is likely due to the sporadic periods of wet weather that558

have characterized the most recent 30-year period, including the early 1980s and late 1990s559

(M. Dettinger & Cayan, 2014) and periods after each drought instance in the 2000s.560

Panels b), d), and f) compare the modern drought metrics to those calculated from561

the paleo-reconstructed ensembles. The ensembles encompass the modern estimates and562
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Drought Occurrence 

Drought Severity

Drought Duration

a) b)

c) d)

e) f )

Paleo-Forced
Livneh-Forced

Paleo-Forced
Livneh-Forced

Figure 6. SSI-based hydrologic drought metrics of a) occurrence c) severity, and d) duration

for the Don Pedro gauge in the Tuolumne Basin calculated in 30-year moving windows and across

the time period from 1400-2017. The dark tan line represents the mean drought metric value

and the shading represents the 5th and 95th percentile bounds. Panels b),d), and f) are non-

exceedance plots of the three-day annual maxima across the extent of the paleo-reconstruction

ensemble. Each gray line represents the sorted three-day annual maxima volumes across the

length of the paleo reconstruction. The dashed black line represents the metric values as derived

from the SAC-SMA-simulated peak flows associated with the modern record (1987-2013).
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also provides many traces that are characterized by more frequent, longer, and severe563

drought. The plausibility of the Central Valley subbasins confronting drought conditions564

that extend well beyond those that have been experienced in the modern observed record565

captured in Livneh forcing data is significant even in the absence of climate change. The566

traces in panels b), d), and f) emphasize the need to better characterize the subbasin567

systems vulnerabilities for the challenging drought conditions that are captured within568

the reconstruction.569

3.2.3 Joint Flood Hazard Across Basins570

Gaussian copulas were fit to the 3-day annual maxima flows for multiple combi-571

nations of basins to characterize joint flood dynamics. The joint probability of flows at572

Don Pedro in the Tuolumne Basin and at Millerton Lake in the Millerton Basin simul-573

taneously exceeding their respective, GEV-based 100-year flood estimates from the most574

recent 30-year period from 1987-2017 was calculated for the length of the reconstruction.575

Figure 7a shows the expected return period associated with those probabilities. Figure576

7b includes New Melones Lake into the joint probability estimation. The return peri-577

ods are calculated using a 30-year moving window across the entire reconstruction. Pan-578

els c) and d) are non-exceedance plots of the respective return periods across the extent579

of the paleo-reconstruction ensemble. The dashed black line represents the return pe-580

riods for the 10-year and 100-year flood derived from the SAC-SMA model forced with581

Livneh historical precipitation and temperature. As with the flood metrics, in order to582

facilitate the most equivalent comparison between the two datasets, each gray line rep-583

resents the sorted return periods for 30-year segments of the paleo-reconstruction and584

across all 50 ensemble members.585

As demonstrated in Figure 7, there is a strong increase in the likelihood of simul-586

taneously exceeding the recently observed historical estimate of the 100-year event, par-587

ticularly during the 1600s wet period (∼20% increase in likelihood). That is, the expected588

frequency of occurrence of simultaneous 100-year flooding events in both the Tuolumne589

and Millerton jumps to once every 320 years, as compared to once every 405 years in the590

most recent 30-year period. There is also a significant decline in the likelihood of joint591

flooding during the late 1500s megadrought. When an additional basin is introduced into592

the copula-based metric, the overall temporal dynamics are similar (Figure 7b), but the593

expected return period increases significantly. That is, the likelihood of simultaneously594
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Tuolumne and Millerton
Tuolumne, Millerton, and New Melones

a)

d)
c) d)

Tuolumne, Millerton, and New Melones

b)

Paleo-Forced
Livneh-Forced

Paleo-Forced
Livneh-Forced

Figure 7. The expected return periods associated with the joint probability of simultaneously

exceeding historical 100-year flood flows at a) Don Pedro (Tuolumne Basin) and Millerton Lake

(Millerton Basin), and c) including New Melones (Stanislaus Basin) calculated in 30-year moving

windows across the time period from 1400-2017. The dark turquoise line represents the average

return period respectively across the ensemble, and the shading represents the 5th and 95th per-

centile bounds. Panels b) and d) show the non-exceedance plots for the return periods derived

across the whole paleo-reconstruction in 30-year segments. The dashed black line represents the

return periods as derived from the SAC-SMA-simulated peak flows associated with the modern

record (1987-2013).

exceeding historical flooding thresholds rapidly declines as more basins are considered.595

During the 1600s wet period, the expected frequency of occurrence of simultaneous 100-596

year flooding events in the Tuolumne, Millerton, and New Melones jumps to once ev-597

ery 450 years, as compared to once every 507 years in the most recent 30-year period.598

For both joint flood metrics, the paleo-reconstruction effectively bounds the modern es-599

timation of the return periods, which provides a richer space to characterize joint flood600

hazards across the subbasins (Figures 7c and 7d).601
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Similar non-stationary dynamics as observed in the flooding metrics in Section 3.2.1602

are apparent in these joint flooding metric as well. Simultaneous flooding in all three basins603

is rarer and more consequential for water systems planning and management than simul-604

taneous flooding in the Tuolumne and Millerton alone. Figures 7a-b demonstrate that605

through the paleo-reconstruction, there are periods (like the 1600s wet period) where the606

likelihood of flooding in the three basins becomes just as common as flooding in the Tuolumne607

and Millerton alone (around the late 1500s megadrought). The additional variability that608

the reconstruction provides demonstrates how dramatically the return periods associ-609

ated with these consequential events changes over time, particularly how these flooding610

events can become more frequent. Once again, using the modern record to quantify joint611

hazard across these subbasins could severely underrepresent flood hazards and the mag-612

nitude of design events.613

3.3 Effects of Thermodynamic Climate Change on Hydrologic Extremes614

3.3.1 Changes in Individual Basin Flood Hazard615

Figure 8 shows the effect of thermodynamic climate changes on the 100-year, 3-616

day flood event in the Tuolumne calculated across 30-year moving windows. The flow617

volumes are represented as deviations from the baseline reconstruction which is shown618

as a gray dashed line at 0. A modern baseline is placed as a dashed black line and is rep-619

resentative of the difference between the modern and the largest 100-year flood event vol-620

ume calculated across the reconstruction. Figure 8a shows scenarios where the precip-621

itation scaling rate is kept at 7% ◦C−1 while temperature is increased by 1, 2, and 3 ◦C,622

while Figure 8b shows scenarios where the temperature trend is maintained at 1°C and623

the precipitation scaling rate is increased to 0% ◦C−1, 7% ◦C−1, and 14% ◦C−1. Both624

increasing precipitation scaling rates and temperature trends shift the 100-year flood peak625

flows upwards, though temperature trends have a stronger impact. For reference, the vol-626

ume differential between the extreme scenarios in Figure 8a is equivalent to about 100627

Oroville Dams worth of water. Conversely, the maximum volume differential associated628

with the precipitation scaling in Figure 8b is equivalent to 33 Oroville Dams worth of629

water. The Tuolumne is a snow-dominated basin, and consequently it is not unexpected630

that the results suggest a greater influence on 100-year flows resulting from increasing631

temperature rather than increased precipitation scaling. Increased temperature shifts632

drive increased snowmelt and rain on snow events that promote greater flood volumes.633

–26–



manuscript submitted to Earth’s Future

a) b)

3T, 1xCC 2T, 1xCC 1T, 1xCC 1T, 2xCC 1T, 1xCC 1T, 0xCC

Paleo-Forced Baseline

Livneh-Forced Baseline

Figure 8. The effect of increasing a) temperature and b) precipitation scaling rates on 100-

year, 3-day flood flows at Don Pedro (Tuolumne Basin). The dark green lines represent the

increase in mean flooding return levels with respect to the baseline scenario (gray line at 0) and

the shading represents the 5th and 95th percentile bounds. A modern baseline (black line) is in-

cluded as reference and represents the distance from the modern peak flow to the maximum peak

flow recorded in the reconstruction.

3.3.2 Changes in Individual Basin Drought Hazards634

Figure 9 shows how the same thermodynamic scenarios imposed in Section 3.3.1635

influence drought occurrence in the Tuolumne Basin, measured in terms of a change in636

the percent of the 30-year window that is classified to be in drought conditions with re-637

spect to the baseline scenario (gray dashed line at 0). A modern baseline is placed as638

a dashed black line and is representative of the difference between the modern drought639

occurrence line from Figure 6a and the worst drought occurrence metric calculated across640

the reconstruction. An increase in each of the thermodynamic mechanisms tends to in-641

crease the percentage of the window classified in drought. A comparison across Figures642

9a and 9b show the larger impact of temperature trends on increased drought occurrence643

(reaching up to 5% or an additional 18 months classified in drought) by way of increased644

evapotranspiration. Precipitation scaling stretches the daily precipitation distribution645

which can lead to tail influences that impact the total number of drought months, but646

has a lower relative influence (reaching up to 1.8% or an additional 6 months classified647

in drought). For example, there are some instances, particularly in the 1T, 1xCC sce-648

nario in Figure 9a that result in values that approach the baseline. This is likely due to649

the precipitation scaling mechanism causing some months to have an increased SSI above650

the drought threshold that offsets the temperature increase. However, as the temper-651
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ature shift further increases, this effect is dominated. Figure S12 shows the same results652

for drought severity and duration. Overall, there is a greater influence from increasing653

temperature trends to increasing drought severity and duration. It’s worthwhile to note654

that the impact from both temperature trends and precipitation scaling is relatively small655

(Figure S12c,d) with respect to increasing consecutive months classified in severe drought656

and these results are further reflected in Figure 12.657

a) b)

3T, 1xCC 2T, 1xCC 1T, 1xCC 1T, 2xCC 1T, 1xCC 1T, 0xCC

Livneh-Forced Baseline

Paleo-Forced Baseline

Figure 9. The effect of increasing a) temperature and b) precipitation scaling rates on

drought occurrence at Don Pedro (Tuolumne Basin). The dark brown lines represent the in-

crease in the percentage of the 30-year window classified in drought conditions with respect

to the baseline scenario (grey line at 0) and the shading represents the 5th and 95th percentile

bounds. A modern baseline is included (black line) as a reference and represents the distance

from the modern drought occurrence metric to the worst drought occurrence recorded in the

reconstruction.

3.3.3 Joint Flood Hazard Across Basins658

Figure 10 shows how similar thermodynamic scenarios influence joint flood haz-659

ard at Don Pedro (Tuolumne Basin) and Millerton Lake (Millerton Basin), measured in660

terms of change to return period associated with the 100-year event with respect to the661

baseline scenario (gray dashed line at 0). As with the prior sections, a modern dashed662

black baseline is included to represent the difference between the modern return period663

estimate and the lowest return period calculated across the reconstruction. Much like664

Figure 8, Figure 10 demonstrates a larger influence from increasing temperature trends665

on making compound flooding events more likely (Figure 10a). Given that the Tuolumne666

and Millerton are both snow-dominated basins, temperature trends create similar snowmelt667
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effects that lead to simultaneous flooding events. Precipitation scaling has a relatively668

reduced, but non-trivial effect (Figure 10b). The greatest influence from precipitation669

scaling is observed under higher imposed temperature trends (we use a constant 3°C tem-670

perature trend in this example). While an increase in precipitation scaling increases the671

likelihood of flooding in any given basin (Figure 8b), Figure 10b demonstrates that it672

decreases the likelihood of joint flooding, and makes the events rarer by increasing the673

return period. Since the imposed precipitation scaling non-linearly adjusts peak flows,674

it ultimately leads to a decrease in correlation in flows across the two basins and there-675

fore a decrease in joint flooding tendencies.676

a) b)

3T, 1xCC 2T, 1xCC 1T, 1xCC 3T, 2xCC 3T, 1xCC 3T, 0xCC

Livneh-Forced Baseline

Paleo-Forced Baseline

Figure 10. The effect of increasing a) temperature and b) precipitation scaling rates the

change in return period associated with simultaneously exceeding historical 100-year-day flood

flows at Don Pedro (Tuolumne Basin) and Millerton Lake (Millerton Basin). The dark blue lines

represent the change in return period with respect to the baseline scenario (gray line at 0) and

the shading represents the 5th and 95th percentile bounds. A modern baseline (black line at 0) is

included as reference and represents the distance from the modern return period to the shortest

return period recorded in the reconstruction.

3.4 Variance Partitioning of Hydrologic Extremes677

The results above show how different metrics of hydrologic extremes vary signif-678

icantly over time due to natural climate variability as well as different mechanisms of cli-679

mate change. Below we use variance partitioning to assess the relative importance of these680

competing factors.681
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3.4.1 Relative Variance Contributions for Individual Basin Flood Haz-682

ard683

We conduct an ANOVA to partition the variance of the 10-year and 100-year 3-684

day floods for each gauged location. Figure 11 shows the results for Don Pedro, while685

results for the other sites are shown in Figure S13-S16. The columns show the results686

of the decomposition when flood metrics are derived with a 30-year, 100-year, and 617-687

year (whole record) time horizon, respectively.688
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Figure 11. A decomposition of the key drivers of variance in the flood metrics for the Don

Pedro gauge in the Tuolumne River Basin for an a,d) 30-year time horizon b,e) 100-year time

horizon and c,f) a 617-year time horizon.

Two main insights emerge from Figure 11. First, natural variability is the primary689

driver of the variance when the flood metrics are calculated using a 30-year time hori-690
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zon (Figures 11a,d). This is especially true for the 100-year flood, where approximately691

70% of the variance in this metric is associated with natural variability. Figure 11d has692

direct relevance to the design standards actively used to inform California’s flood plan-693

ning and management. However, the influence of natural variability on the spread in flood694

metrics across the ensemble substantially decreases when the metric is calculated across695

a 100-year time horizon (Figures 11b,e), and becomes almost negligible when calculated696

over the entire 617-year period (Figures 11c,f). This suggests that the time horizon over697

which the flood metrics are calculated highly influences the perception of key drivers.698

A longer time horizon more clearly captures the effects of longer-term climate change699

on the variation in the flood metrics, while during shorter windows the variation in flood700

metrics across the ensemble is more likely to capture noise associated with natural vari-701

ability. The reasons for this are twofold. First, when the time horizon is large, each en-702

semble member for a particular climate change scenario contains many annual maxima703

that are all drawn from the same underlying climate state, helping to converge design704

event estimates across ensemble members towards similar values. Second, when the time705

horizon is large, there are more opportunities for climate change signals to influence the706

distribution of annual maxima flows for all ensemble members under a given climate change707

scenario, which will help separate the distribution of annual maxima across the differ-708

ent scenarios. Together, these two factors will lead to more variance in the overall en-709

semble being explained by the climate change scenarios compared to natural variabil-710

ity.711

Of the thermodynamic changes, temperature trends are the primary driver of vari-712

ation in peak flows, followed by precipitation scaling. This result, also seen in Figure 8,713

suggests that temperature increases that lead to increased snowmelt and rain on snow714

events influences peak flows in the region more than increases in extreme precipitation715

due to increased moisture in the atmosphere. The interactions between the two drivers716

generally accounts for a smaller percentage of the variance, but as the time horizon in-717

creases, interactive effects are close to the same magnitude as precipitation scaling (16%718

vs. 24% for the whole period). This result highlights how the effects of precipitation scal-719

ing are dependent on the temperature increase, because precipitation scaling is param-720

eterized as a percentage change in extreme precipitation per °C warming.721

Figure S13-S16 show the same results for the remaining four basins. Overall, all722

basins exhibit similar behavior, where the influence of natural variability decreases with723
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time horizon. Temperature change has a larger impact than precipitation scaling in all724

basins except for New Hogan Lake (Figure S15). New Hogan Lake is relatively small,725

has a low elevation, and less snow dominated compared to the other basins (Table S1),726

and thus sees a greater influence from precipitation scaling on flood variability.727

Overall, the results in Figure 11 portray conflicting storylines and complexity for728

flood planning and management depending on the way the flood metrics are defined. Un-729

der current CA planning conditions (represented in Figure 11d), the greater influence730

of natural variability on individual flood hazard would suggest prioritizing short-term731

adaptive tools like seasonal forecasts. However, under alternative planning scenarios that732

may utilize longer time horizons, infrastructure investments look to be more useful to733

manage hazards from thermodynamic climate changes. Most importantly, water plan-734

ners will need to engage with both drivers; prioritizing longer horizons of focus could ne-735

glect the effects of internal variability in the near term, which as Figure 5 portrays, can736

lead to magnitudes of peak flows that far surpass those in the modern record. Ultimately,737

there needs to be consideration of both the exceptional magnitude of internal variabil-738

ity in more immediate decision relevant 30-year timescales while still being cognizant of739

the longer-term climate changes. Thus, it’s important for water resources agencies that740

utilize dynamic and adaptive planning methods to effectively balance the value, resilience,741

and potential regrets of near term investments (e.g. Haasnoot et al. (2013); Schlumberger742

et al. (2022)).743

3.4.2 Relative Variance Contributions for Individual Basin Drought Haz-744

ards745

Figure 12 shows the ANOVA decomposition for drought occurrence, intensity, and746

duration for 30-year and 100-year moving windows, as well as the entire 617-year period.747

The variance partitioning for drought occurrence follows a similar pattern to the flood748

metrics above (Figures 12a-c). For short time horizons of 30 years, about 20-40% of drought749

occurrence variability across the ensemble is associated with natural variability. How-750

ever, as the time horizon grows, more variance is partitioned to the climate changes, and751

for extremely long horizons, almost all of the variance in drought occurrence across the752

ensemble is associated with climate change. Specifically, temperature change becomes753

the near-sole driver of drought occurrence variability, likely because of the strong increases754

in evapotranspiration with warming that drive drought occurrence.755
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Figure 12. A decomposition of the key drivers of variance in the drought metrics for the Don

Pedro gauge in the Tuolumne River Basin for a,d,g) 30-year window b,e,h) 100-year window and

c,f,i) a 600-year window.

For drought intensity, we see a similar pattern in variance partitioning between nat-756

ural variability and climate change factors, but the magnitude and degree of change in757

the variance partitioning more heavily favors natural variability (Figures 12d-f). For 30-758
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year windows, natural variability accounts for upwards of 80% of the total variance in759

drought intensity, and this falls to the (still substantive) value of 28% when the window760

reaches 617 years. Of the climate changes, temperature trends once again are the main761

driver, but precipitation scaling and interactive effects also play an important role in drought762

intensity variability across the ensemble. Given that the mechanism of precipitation scal-763

ing stretches the daily precipitation distribution such that large precipitation values be-764

come larger and small precipitation values become smaller, we see a more significant in-765

fluence from this mechanism on drought intensity than in the other metrics.766

Unlike the other two drought metrics, drought duration is primarily driven by nat-767

ural variability, even when the metric is derived across the longest window. Drought du-768

ration generally is linked to the length of time in which there is no precipitation. None769

of the imposed climate changes directly affects this behavior in the same manner that770

precipitation scaling directly influences drought intensity or temperature trends affect771

drought occurrence. Temperature increases can somewhat extend drought duration by772

increasing evapotranspiration at the beginning and end of a drought period (Figure 12h),773

but ultimately the duration of a drought is dictated by the occurrence of large storms774

that end the drought, which is primarily driven by natural variability in our climate sce-775

narios. The decomposition results for the remaining four gauged locations are presented776

in Figure S17-S20. These gauged locations show similar behavior as the Don Pedro gauge.777

Temperature trends play a large role in influencing drought occurrence, and this influ-778

ence is particularly large in Merced and New Melones Lake (S17a, S20a). Precipitation779

scaling plays a small role in drought occurrence, and drought duration is primarily driven780

by natural variability.781

The drivers of drought are more complex than the flood hazard metrics due to the782

heterogeneity of behavior across the drought metrics. A comparison between Figures 12a,d,783

and g demonstrate vast differences in drivers (and therefore approaches for managing784

drought) depending on exactly what characteristic of drought is prioritized in planning.785

The choice of time horizon further complicates the understanding of the appropriate plan-786

ning process, especially in the case of drought occurrence (Figures 12a,b). However, drought787

intensity and drought duration show more stable influence primarily by natural variabil-788

ity and would consequently need a mix of carefully coordinated shorter-term adaptive789

actions (e.g., water transfers, conservation, and shifts in allocative priorities to higher790

value uses) that provide flexibility to improve the robustness of longer-term infrastruc-791
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ture investments to extreme variability in Central Valley drought regimes (e.g., improved792

conveyance, groundwater banking, managed aquifer recharge, and others; Herman et al.793

(2020); Hamilton et al. (2022)).794

3.4.3 Relative Variance Contributions for Joint Flood Hazard795
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Figure 13. A decomposition of the key drivers of variance in joint flood metrics for a),c)

Tuolumne and Millerton and b,d) Tuolumne, Millerton, and Merced.

Figure 13 shows the variance partitioning for the copula-based joint flood hazard796

metric in two cases: (1) bivariate flood risk in the Tuolumne and Millerton (Figure 13a,c);797

and (2) trivariate flood hazard in the Tuolumne, Millerton, and Merced (Figure 13b,d),798

both for the 100-year, 3-day flood. In both cases, the primary driver of joint flood haz-799

ard is natural variability. Unlike flood hazard for individual basins (see Figure 11), the800
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contributions of natural variability to the total variance joint flood hazard does not de-801

cline substantially with time horizon. Additionally, as more locations are considered when802

quantifying joint flood hazard, natural variability becomes an even more prominent driver803

of spatially compounding major flood hazards. These results suggest that the dominat-804

ing factor that dictates whether basins experience simultaneous large flooding is largely805

randomness in storm tracks and the associated spatial distribution of extreme precip-806

itation and temperature-driven snowmelt. The thermodynamic climate changes that in-807

fluence snowmelt or scale up storms do play a role, particularly if the basins are in close808

proximity (such as the Tuolumne and Millerton in Figures 13a,c). However, as more basins809

are included, natural variability in the weather during large storms dominates. Figure810

13 reveals the inherent challenges of managing for spatially compounding flood hazards811

in this region. If persistent climate changes are a more dominant factor in driving joint812

flooding across all basins, then shared investments in canal expansion or rehabilitation813

across the regions could be used to offset some of this risk. However, since natural vari-814

ability is the key driver of large flooding, alternative methods of creating unified plan-815

ning and management strategies again need to be considered, using a mix of carefully816

coordinated shorter-term adaptive actions that provide flexibility to improve the robust-817

ness of longer-term infrastructure investments to the extreme hydro-climatic variabil-818

ity of the Central Valley (Herman et al., 2020; Hamilton et al., 2022).819

4 Conclusion820

This study contributes a novel framework to better understand the relative role of821

natural climate variability and climate change in determining the uncertainty in future822

hydrologic extremes of great importance to water systems planning and management.823

This framework is complementary to similar approaches based on GCM ensembles, but824

instead utilizes a large stochastic ensemble of paleo-based weather and hydrologic sim-825

ulations to capture the plausible range of natural variability in drought and flood dy-826

namics. The impacts of pre-selected mechanisms of climate change, including shifts in827

temperature and precipitation scaling, are then incorporated into the ensemble. The vari-828

ance in hydrologic extremes is then partitioned across those climate changes and nat-829

ural variability in the ensemble.830

We first demonstrate the utility of the generator forced with paleodata in captur-831

ing and expanding on the dynamics of the modern record, which makes it a particularly832
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useful for facilitating exploratory modeling and further quantification of the robustness833

of water resources systems to challenging scenarios that have been seen in the region’s834

past hydroclimate. We also highlight the large non-stationarity that exists in the flood835

and drought metrics through the length of the reconstruction, particularly taking note836

of consequential 100-year flooding periods that can become as likely as 10-year events837

in parts of the record (i.e., 10 times more likely). These results have large implications838

for commonly employed stationary analyses, such as deriving design event estimates from839

the modern record, to quantify flood risk in this region. Our results suggest that these840

techniques severely underrepresent hydro-climatic hazards and the magnitude of design841

events that infrastructure should be built for.842

The results of the variance decomposition component of the study highlight the fol-843

lowing main conclusions:844

• Uncertainty in future flooding within individual basins is largely driven by ther-845

modynamic climate change, especially if evaluated over long time horizons. Flood-846

ing within snow-dominated basins is primarily driven by changes in temperature,847

while lower-elevation basins see a greater influence from precipitation scaling.848

• The relative importance of climate change and natural variability on the uncer-849

tainty in future drought depends on the drought metric of interest. Changes in850

temperature drive drought occurrence, while precipitation scaling plays a role in851

drought intensity. Drought duration is primarily driven by natural variability.852

• The uncertainty in simultaneous flood hazard across multiple basins is largely driven853

by natural variability, and this influence increases as additional basins are consid-854

ered.855

• The perception of the most important driver is highly influenced by the time hori-856

zon over which a metric is calculated. Shorter time horizons are less likely to cap-857

ture how climate change uncertainty influences the uncertainty in hydrologic ex-858

tremes.859

The variance decomposition reveals a complicated path to robust planning and manag-860

ing for both flood and drought in the region. The results suggest that natural variabil-861

ity and climate change influence both extremes to varying degrees. Furthermore, differ-862

ent characteristics of a single extreme (i.e. drought occurrence and duration) can be in-863

fluenced by different drivers.864
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Additionally, if different time horizons are prioritized for planning for extremes, the865

understanding of the most important drivers of flood and drought hazards also changes.866

This last facet especially presents a problem for adaptive planning and management. This867

type of planning triggers management decisions based on the evolution of an observed868

variable (including hydroclimatic variables like precipitation or streamflow) over a spe-869

cific horizon. As demonstrated in our study, tracking peak flows over a 30-year or 100-870

year horizon are both appropriate for longer-term flood management, but prioritizing871

the latter could neglect the effects of internal variability in the near term while increas-872

ing the potential for maladaptive longer-lived capital investments in infrastructure. Thus,873

it’s important for water resources agencies that utilize these dynamic planning methods874

to effectively balance the value and potential regret of near term investments (Herman875

et al., 2020; Schlumberger et al., 2022).876

One of the most important results of our study is that natural variability plays a877

very large role in dictating the future uncertainty in key metrics of flood and drought878

that form the basis of water resources planning; at times much larger than that of promi-879

nent climate change signals. This suggests that better quantification of the true range880

of natural variability in these extremes should be a major priority for the climate and881

hydrologic research community, and equally important, these efforts should directly in-882

form future planning efforts for water resources systems. However, historically, this has883

often not been the case, with concerns about climate change often overshadowing the884

potential impacts of natural variability (see discussions in Koutsoyiannis (2020, 2021)).885

Our results show, in particular, the importance of natural variability on spatially886

compounding flood hazard, which arguably poses a more difficult and complex manage-887

ment problem than addressing hazards in any one basin due to the need for infrastruc-888

ture coordination across space and time. This highlights the potential value that longer,889

paleo-based data could bring to the estimation of joint flood hazards. The field of pa-890

leoflood hydrology has historically focused on the identification and dating of flood ev-891

idence in fluvial sedimentary archives, but incorporating speleothems and botanical archives892

can substantially increase the comprehensiveness and quality of paleoflood data (Wilhelm893

et al., 2018). Alluvial archives are also being used in more densely-populated and flood-894

prone regions (Toonen et al., 2020), and recent studies have shown that incorporation895

of these data can significantly reduce the uncertainty of extreme flood estimates (Engeland896

et al., 2020; Reinders & Muñoz, 2021). Methodological advances that can use these new897
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and diverse data sources to constrain joint flood hazard estimates across sites would be898

particularly helpful, as would guidance on how to appropriately and consistently incor-899

porate paleodata into risk management practices that also consider the effects of climate900

change. The work of England Jr et al. (2019) that helped incorporate paleodata into U.S.901

flood frequency guidance (Bulletin 17C) provides inspiration for such an approach.902

The results also highlight the significant impact of natural variability on drought903

uncertainty, especially drought duration and intensity, and the implications stated above904

for joint flood hazards also extend to drought hazards. There are state-of-the-art tech-905

niques currently being applied within the dendrochronology community that can help906

improve our understanding of the natural range of drought variability. Beyond using tree907

ring widths, some studies are isolating earlywood and latewood signals for better drought908

reconstruction (Soulé et al., 2021; Song et al., 2022) or using blue intensity (the inten-909

sity of reflectance of the blue channel light from a wood core) to identify more stable climate-910

growth relationships that inform more robust reconstructions (Akhmetzyanov et al., 2023).911

Furthermore, better forecasts could provide water managers with more effective ways to912

navigate drought caused by natural variability. Skillful near-term drought predictions913

have been achieved by using decadal hindcasts from CMIP6 (Zhu et al., 2020) and Ma-914

chine learning based approaches, particularly those that can model catchment memory915

are being used to create skillful seasonal drought predictions (Amanambu et al., 2022;916

Sutanto & Van Lanen, 2022)917

One key limitation of this work is that we only consider a subset of plausible cli-918

mate change scenarios that are not comprehensive, but rather reflect two mechanisms919

of change that are likely to occur and to be consequential to the San Joaquin Valley in920

California. This limitation includes the omission of the possibility that properties of long-921

term climate variability will itself change in the future under climate change. Another922

limitation is that we represent natural variability with one statistical model based on his-923

torical and paleo data. As others have shown (Koutsoyiannis, 2021), the quantification924

of natural variability often greatly depends on the statistical model used.925

While outside the scope of this study, the framework presented and conclusions drawn926

here would benefit from a direct comparison against a similar approach using a climate927

ensemble drawn from a GCM, especially a single model initial-condition large ensemble928

(SMILE; see Lehner et al. (2020)). In a SMILEs-based framework, projections of pre-929
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cipitation and temperature derived from a single GCM under multiple initial conditions930

and multiple emission scenarios could be downscaled and propagated through hydrologic931

models to create a future streamflow ensemble, which could be used for partitioning vari-932

ance in hydrologic extremes across emission scenarios and natural variability. By com-933

paring results between the framework of this study and a SMILEs-based framework, one934

could better understand whether and how the relative roles of natural variability and935

climate change are consistent or depend on methodological choice.936

Regardless of method used, the results of this work strongly suggest that large en-937

sembles of natural variability are likely needed to adequately assess future risks to wa-938

ter resources systems that are particularly sensitive to extreme events. In future work,939

we intend to pair the hydrologic ensembles developed here with a regional, multi-sector940

model of California’s Central Valley (Zeff et al., 2021) to more fully assess the risk that941

future hydroclimate extremes pose to stakeholders across the system, including ground-942

water banks and irrigation districts. The ultimate goal of such work is to facilitate a greater943

understanding of how future extremes lead to heterogeneous shortage and flooding im-944

pacts across stakeholders, and to help identify robust adaptation strategies to address945

these future risks.946
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Appendix A: Glossary of Terms1249

• Baseline weather scenario: The 600-year daily precipitation and temperature1250

scenario that is created by forcing the weather generator with paleo-reconstructed1251

weather regimes. This scenario is comprised of 50 stochastic ensemble members.1252

• Baseline streamflow scenario: The 600-year daily streamflow scenario acquired1253

by driving the hydrologic model with paleo-reconstructed weather (often referred1254

to as 0T, 0CC). This scenario is comprised of 50 stochastic ensemble members.1255

• Climate scenario: A 600-year daily streamflow scenario created by forcing the1256

hydrologic model with a baseline weather scenario that is layered with a set of ther-1257

modynamic climate changes.1258

• Ensemble member: Also referred to as a stochastic realization; each climate sce-1259

nario is comprised of 50 stochastic ensemble members1260

• Record length: The total length of the dataset1261

– Paleo-informed weather and streamflow datasets: 617 years (1400-20171262

CE) at a daily time scale1263

– Observed Livneh climate (temperature and precipitation) dataset: 631264

years (1950-2013 CE) at a daily time scale1265

– Observed CDEC streamflow dataset: 33 years (1986-2019) at a daily time1266

scale1267

• Time horizon: also referred to as moving window; the length (in years) of the1268

sliding window that passes over the total record length.1269
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Appendix B: Metrics and Time Horizons1270

Metric Description Calculated Justification Citation

Flood Metric 10-Year Return

Period Flow

GEV fit to 3-day

maximum flow

Captures risk to

smaller flood-

plains (or nui-

sance flooding

in larger areas)

and drives smaller

investments.

Progress on

Incorporating

Climate Change

into Planning

and Management

of California’s

Water Resources

(July 2006)

Flood Metric 100-Year Return

Period Flow

GEV fit to 3-day

maximum flow

Drives larger

riverine infras-

tructure develop-

ment and flood

risk manage-

ment. Requires

FEMA-mandated

insurance.

Central Valley

Flood Protection

Plan Update 2022

(November 2022)

Drought Metrics Occurrence,

Severity, and

Duration

Standardized

streamflow-based

indices

No state-wide

definition. Histor-

ical droughts have

been identified

based on a combi-

nation of metrics

such as reservoir

depth and deficit

magnitude and

duration.

California’s

Most Significant

Droughts: Com-

paring historical

and recent condi-

tions (February

2015)
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Spatially Com-

pounding Flood

Metric

Likelihood of

simultaneously

exceeding his-

torical 10-year

and 100-year flow

events in n basins

n-dimensional

Gaussian copula

Flooding across

the San Joaquin

system could

result in infras-

tructure failure

such as levee

breaks and dis-

rupt deliveries of

fresh water to 3

million acres of

farmland.

Managing Floods

in California

(March 2017);

Zscheischler et al.

(2020)

Time Horizon 30-Year N/A CA prioritizes in-

vestment in flood

management

over a 30-year

planning horizon

Central Valley

Flood Protection

Plan Update 2022

(November 2022)

Time Horizon 100-Year N/A Not actively used

in planning and

management,

but can repre-

sent longer-term

investments.

N/A
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Key Points:8

• We introduce a framework to create 600-year ensembles of future weather and stream-9

flow for basins in the San Joaquin Valley.10

• We discover vast variability and non-stationarity in flood and drought extremes11

in the region over the past 600 years.12

• Variability in extremes is primarily attributed to natural variability, but climate13

changes are influential under longer planning horizons.14
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Abstract15

To aid California’s water sector to better manage future climate extremes, we present16

a method for creating a regional ensemble of plausible daily future climate and stream-17

flow scenarios that represent natural climate variability captured in a network of tree-18

ring chronologies, and then embed anthropogenic climate change trends within those sce-19

narios. We use 600 years of paleo-reconstructed weather regimes to force a stochastic weather20

generator, which we develop for five subbasins in the San Joaquin River in the Central21

Valley region of California. To assess the compound effects of climate change, we cre-22

ate temperature series that reflect scenarios of warming and precipitation series that are23

scaled to reflect thermodynamically driven shifts in the daily precipitation distribution.24

We then use these weather scenarios to force hydrologic models for each of the San Joaquin25

subbasins. The paleo-forced streamflow scenarios highlight periods in the region’s past26

that produce flood and drought extremes that surpass those in the modern record and27

exhibit large non-stationarity through the reconstruction. Variance decomposition is em-28

ployed to characterize the contribution of natural variability and climate change to vari-29

ability in decision-relevant metrics related to floods and drought. Our results show that30

a large portion of variability in individual subbasin and spatially compounding extreme31

events can be attributed to natural variability, but that anthropogenic climate changes32

become more influential at longer planning horizons. The joint importance of climate33

change and natural variability in shaping extreme floods and droughts is critical to re-34

silient water systems planning and management in the Central Valley region.35

Plain Language Summary36

California experiences cycles of floods and droughts that can be driven by both nat-37

ural variability and climate change. The specific role of these drivers play in influenc-38

ing extremes is uncertain, but can strongly dictate how to best plan and manage regional39

water systems for future extremes. To better quantify the role of these drivers, we in-40

troduce a framework that utilizes a 600-year tree-ring reconstruction to create long se-41

quences of plausible ensembles of future weather and streamflow for key basins in the42

San Joaquin Valley. We find that a large portion of variability in extremes can be at-43

tributed to natural variability, but that anthropogenic climate changes become more in-44

fluential at longer planning horizons. Furthermore, our perception of important drivers45

can be skewed depending on the specific definitions used to analyze floods and droughts,46
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which can present significant challenges for adaptation planning and infrastructure de-47

velopment tied to hydroclimate indicators. This study also illustrates the vast variabil-48

ity in extremes that the region has experienced over the past 600 years and highlights49

the pitfalls of using stationary risk measures.50

1 Introduction51

The recent drought conditions impacting California are occurring within the broader52

context of two decades of extreme climate variability. Since 2000, California has expe-53

rienced four periods of drought: (2000-2003, 2007-2009, 2012-2016, and the ongoing drought54

beginning in the 2020). The former three complete drought periods were all ended by55

extreme atmospheric river (AR)-driven events. While offering much needed precipita-56

tion, these storms often cause widespread flooding and landslides. In 2017, extreme pre-57

cipitation associated with ARs generated California’s wettest winter in a century and58

caused catastrophic damage to Oroville Dam, which prompted the evacuation of 188,00059

people and required nearly $1 billion in repairs (Henn et al., 2020). Since this event, Cal-60

ifornia has ebbed and flowed through wet and dry periods, including experiencing the61

driest 22-year period in at least 1,200 years (A. P. Williams et al., 2022).62

The recent two decades of California climate extremes are in part a manifestation63

of the extreme natural variability that characterizes the regional climate. Tree ring re-64

constructions have shown that the region experienced multiple persistent megadroughts65

over the past two millennia (late 800s, mid-1100s, late 1200s, mid-1400s, and late 1500s),66

long before anthropogenic influence (Stahle et al., 2000, 2007; A. Williams et al., 2021).67

Multi-millennial control runs of coupled global climate models (GCMs) have also repro-68

duced megadroughts in the Southwestern U.S. even without any external sea surface tem-69

perature (SST) forcing, suggesting that these droughts can develop due to internal cli-70

mate variability alone (Hunt, 2011). Some (but not all) of this natural drought variabil-71

ity is linked to major modes of atmospheric and oceanic variability, such as the El Niño72

Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) (McCabe et73

al., 2004; Hoerling et al., 2009; Seager et al., 2015; Cook et al., 2016). Interspersed across74

the past two centuries, California has also experienced several extreme precipitation events75

(e.g., 1908-1909, 1913-1914, 1940-1941, 1955-1956, 1969, 1986, and 1997); most promi-76

nently the Great Flood of 1861-62 that turned the San Joaquin and Sacramento Valleys77

into an inland sea (M. D. Dettinger & Ingram, 2013). This event notably occurred af-78
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ter a 20-year drought (Null & Hulbert, 2007). Sediment reconstructions in the Klamath79

Basin suggest that the 1861-1862 megaflood was not an extreme outlier, but rather a 100-80

200-year event that has been matched in magnitude several times over the last two mil-81

lennia (e.g., 212, 440, 603, 1029, 1300, 1418, 1605, 1750, and 1810 CE; M. D. Dettinger82

and Ingram (2013)).83

The historic droughts and floods above, independent of anthropogenic-related warm-84

ing, confirm the strong influence of natural climate variability in California and more broadly85

across the Western U.S. However, recent studies show that climate change is amplify-86

ing the severity of these extremes. Warming due to anthropogenic radiative forcing has87

intensified recent droughts in the region, primarily through enhanced atmospheric mois-88

ture demand and soil moisture depletion (A. P. Williams et al., 2020). As noted above,89

the recent cumulative drought conditions in California and the rest of the Western U.S.90

over the past two decades now ranks as the driest 22-year period in at least 1,200 years91

(A. P. Williams et al., 2022). Similarly, climate change is increasing the risk of extreme92

precipitation events via an increase in the strength of cool-season AR events associated93

with a rise in atmospheric moisture content (Kunkel, 2003; Kirchmeier-Young & Zhang,94

2020). A recent study by X. Huang and Swain (2022) found that climate change has al-95

ready doubled the likelihood of AR-driven megastorms similar to that which caused the96

Great Flood of 1861-62, and that megastorm sequences of increased frequency and larger97

magnitude are likely with continued warming.98

Thus, the present and evolving risks posed by hydrologic extremes in California is99

defined by the combined influence of natural climate variability and anthropogenic cli-100

mate change. Yet the degree to which these two factors will control the future frequency101

and magnitude of extremes remains uncertain (Hamlet & Lettenmaier, 2007; Siler et al.,102

2019; Bass et al., 2022). From the perspective of water resource decision-makers who are103

charged with planning and managing large-scale infrastructure to mitigate the impacts104

of extreme events, this ambiguity presents a significant challenge. If climate change is105

the dominant factor that will determine the future magnitude, frequency, and duration106

of extreme events, then resources and attention should be concentrated on identifying107

and narrowing the uncertainty of the most prominent climate change signals and prop-108

agating them into updated design event estimates used for planning. However, if nat-109

ural variability plays an equal or larger role in determining the properties of hydrologic110

extremes relevant to engineering design, then research into the plausible range of extremes111
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due to natural variability should be equally prioritized (e.g., see Koutsoyiannis (2021)).112

A greater role of natural variability also suggests that dynamic and reversible adapta-113

tions may be favorable over irreversible investments. It is thus critically important to114

quantify the relative and joint roles of climate change versus natural variability in shap-115

ing the characteristics of hydrologic extremes, to help balance the allocation of atten-116

tion and resources in a way that best serves the water sector to prepare for future ex-117

treme events.118

A growing body of work has sought to partition the relative effects of climate change119

and natural variability, with a focus on climate variables and in the context of multi-model120

ensemble simulations (Hawkins & Sutton, 2009; Yip et al., 2011; Knutti et al., 2017; Row-121

ell, 2012; Lehner et al., 2020). These studies primarily attribute variability in projected122

global and regional temperature and precipitation to climate change scenario uncertainty,123

global climate change model (GCM) uncertainty, and natural variability. Lehner et al.124

(2020) shows that scenario and model uncertainty are the dominant drivers of global decadal125

mean annual temperature and precipitation, but that natural variability dominates pro-126

jections of regional temperatures (in Southern Europe) and precipitation (in the U.S. Pa-127

cific Northwest and Sahel region), particularly at shorter (and more decision-relevant)128

time scales. Fewer studies have explicitly considered the role of natural climate variabil-129

ity when partitioning variance in projections of hydrologic and water systems variables130

(Kay et al., 2009; Jung et al., 2011; Vidal et al., 2015; Whateley & Brown, 2016; Schlef131

et al., 2018; Cai et al., 2021). Kay et al. (2009) found that flood frequency and winter-132

time runoff in Europe are mostly influenced by choice of GCM, although they quanti-133

fied natural climate variability using a limited number of GCM integrations with differ-134

ent initial conditions. Vidal et al. (2015) found that natural variability highly influences135

low flows in snow-dominated catchments in the French Alps, and Cai et al. (2021) found136

that natural variability is a dominant driver of rainy season runoff in Northeastern China.137

Jung et al. (2011) quantified natural variability using a block bootstrap on the histor-138

ical record and found it to have the largest impact on the variance of large floods, as com-139

pared to GCM structure, emission scenario, land use change scenario, and hydrologic model140

parameter uncertainty. Similarly, Whateley and Brown (2016) and Schlef et al. (2018)141

created ensembles of future streamflow projections with a stochastic weather generator142

and rainfall-runoff model and found that the variance of reservoir storage as well as wa-143
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ter system performance measures is mostly driven by natural climate variability, partic-144

ularly in the first few decades of the projections.145

The relative roles of natural variability and climate change on the variance of hy-146

drologic variables of interest often depends on how natural variability is quantified and147

propagated into an ensemble of projections. In a majority of the climate studies (Hawkins148

& Sutton, 2009; Yip et al., 2011; Knutti et al., 2017; Rowell, 2012; Lehner et al., 2020)149

and three hydrologic studies (Kay et al., 2009; Jung et al., 2011; Vidal et al., 2015) ref-150

erenced above, natural variability was determined using multi-member ensembles of GCMs151

run with different initial conditions. However, the degree to which initial-condition en-152

sembles can represent true natural climate variability is unclear (Deser et al., 2020). For153

instance, these models poorly represent regional precipitation and drought persistence154

(Rocheta et al., 2014; Moon et al., 2018) and underestimate AR moisture flux and fre-155

quency (Zhou & Kim, 2018) all of which are important to regional planning and man-156

agement of water systems. While the recent generation of models in CMIP6 better rep-157

resents key features of natural climate variability (e.g., blocking; major climate modes)158

compared to older generations, significant biases remain (Tatebe et al., 2019; Schiemann159

et al., 2020)160

An alternative way to estimate the relative influence of natural variability and cli-161

mate change on regional hydrologic response is through bottom-up approaches that em-162

ploy stochastically generated ensembles (Dessai & Hulme, 2004; Wilby & Dessai, 2010;163

Nazemi & Wheater, 2014). These methods require synthetic generators trained on ob-164

served weather or hydrologic records, which can generate large ensembles of scenarios165

that extrapolate beyond the observation limits of the historical record, maintain phys-166

ical plausibility, and embed climate changes into the ensemble. The generation and par-167

titioning of variability in the resulting hydroclimate metrics can provide a more robust168

way to quantify how much variance in regional hydrologic extremes is driven by climate169

changes versus natural variability. However, the availability of stochastic models to sup-170

port these analyses is limited, particularly when interested in the variance decomposi-171

tion of multiple properties of different hydrologic extremes (i.e., magnitude, duration,172

frequency, and spatial coherence of floods and droughts). Furthermore, the ways in which173

flood and drought events are defined, and particularly the time horizon (moving window)174

over which they are defined, can influence how the relative influences of climate variabil-175

ity and change are perceived. As time horizon shortens, it becomes increasingly difficult176
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to identify clear climate change signals amongst the noise of natural climate variability.177

For example, Lehner et al. (2020) attributed the vast majority of variance in winter pre-178

cipitation projections over the US Pacific Northwest to natural climate variability, but179

this was based on a 10-year moving window (i.e., decadal average). It is possible that180

any climate change impacts on mean winter precipitation, even if present, are not dis-181

cernable from the noise within such a short moving window. This issue is especially true182

for the properties of extreme events, because there are so few samples available from which183

to estimate signal from noise (even with many ensemble members). To date, it remains184

unclear how the choice of time horizon influences our understanding of the relative roles185

of natural climate variability and climate change on the uncertainty in hydrologic ex-186

tremes.187

Based on the above knowledge gaps, this study addresses the following questions:188

1. What is the relative importance of natural variability and climate change on vari-189

ability in decision-relevant drought and flood metrics for the Central Valley of Califor-190

nia?191

2. How does the selected scale of the time horizon used for analyses influence the192

perceived importance of these drivers?193

To answer these questions, we contribute a framework for creating a regionally con-194

sistent ensemble of plausible daily future climate and streamflow scenarios that repre-195

sent natural climate variability captured in a network of tree-ring chronologies, and then196

embed anthropogenic climate change trends within those scenarios. A key contribution197

of this study is the use of 600 years of paleo-informed weather regimes (WRs; Gupta et198

al. (2022)) to force a weather-regime based stochastic generator (Steinschneider et al.,199

2019; Najibi et al., 2021), which we develop for five watersheds in the San Joaquin River200

basin. To assess the compound effect of climate change, we create temperature series that201

reflect projected scenarios of warming and precipitation series that have been scaled to202

reflect thermodynamically driven shifts in the distribution of daily precipitation. We then203

use these weather scenarios to force hydrologic models for each basin, generating ensem-204

bles of streamflow across the region. Decision relevant hydrologic metrics for character-205

izing flood and drought conditions are defined and calculated across San Joaquin sub-206

basins and across the paleo-period using time horizons of varying scale (see Appendix207

B). Variance decomposition is then employed to characterize the relative contributions208
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of natural variability and climate changes as drivers of flood and drought hazards in in-209

dividual subbasins and for spatially compounding extremes that emerge across groups210

of subbasins.211

2 Data and Methods212

New Hogan Lake
(Calaveras River)

New Melones Reservoir
(Stanislaus River)

La Grange Dam 
(Tuolumne River)

Millerton Lake
(San Joaquin River)

Merced Falls
(Merced River)

Figure 1. The study area is comprised of five subbasins within the greater San Joaquin River

basin.

This study focuses on five subbasins within the San Joaquin River basin (Figure213

1): the Tuolumne River, the Merced River, the San Joaquin River, the Stanislaus River,214

and the Calaveras River. The ultimate goal of this study is to partition the effects of nat-215

ural climate variability and climate change on different properties of floods and droughts216

across these watersheds. We contribute a five-step methodology in order to achieve this217

goal (Figure 2). We first create a novel method to incorporate reconstructed weather regime218
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dynamics (Gupta et al. 2022) into the generation of daily weather through the paleo-219

period (Section 2.1). Then, we create 600 years of surface weather ensembles across the220

five subbasins of the San Joaquin conditioned upon these reconstructed dynamics. We221

also create additional ensembles of surface weather layered with thermodynamic climate222

changes, such as temperature trends and precipitation scaling (Section 2.2).223

1 2 3

Generation of Multi-Basin 
Hydrologic Ensembles

Creation of 
Multi-Basin Weather

Ensembles Across
San Joaquin Valley

Incorporation of  Reconstructed
Dynamics into Synthetic Weather 

Generation

Methodology

Calculation of Basin-Speci�c
and Joint-Basin Flood and Drought

Metrics

Section 2.1 Section 2.2 Section 2.3

Section 2.4 Section 2.54 5

Analysis of Variance
of Key Metrics

Figure 2. The main methodological components of this study. Reconstructed weather regime

dynamics are used to drive weather simulations across the San Joaquin valley that also embed

signals of thermodynamic climate change. Ensembles of generated surface weather are used

to force hydrologic models to develop streamflow ensembles. Metrics pertaining to flood and

drought extremes are calculated throughout the simulation period across basins and ensemble

members, and an ANOVA decomposition is used to partition the variance of each metric across

the ensemble into variance contributions from thermodynamic climate changes and natural vari-

ability.

These ensembles are forced through hydrologic models (SAC-SMA and HYMOD)224

calibrated for each subbasin to generate ensembles of daily streamflow (Section 2.3). From225
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these streamflow ensembles, we calculate flood and drought metrics, including copula-226

based metrics to quantify joint flood hazard across basins (Section 2.4). Finally, anal-227

ysis of variance (ANOVA) is used to partition the contribution of natural variability and228

the imposed climate changes to variability in the different flood and drought metrics con-229

sidered (Section 2.5).230

2.1 Reconstruction of WR Dynamics231

Ensembles of plausible future climate are generated using our extensions of the WR-232

based stochastic weather generator presented in Steinschneider et al. (2019) and Najibi233

et al. (2021) to incorporate paleo-reconstructions of WRs. The generator is comprised234

of a three-step hierarchical structure (Figure 3): (1) identification and simulation of WRs235

that define large-scale patterns of atmospheric flow across the entire Western U.S., (2)236

simulation of local weather conditioned on the WRs, and (3) perturbations to the sim-237

ulated weather reflective of thermodynamic climate change. This study extends step (1)238

to utilize reconstructed WRs created in Gupta et al. (2022). In that study, a multi-objective239

optimization and regression-based framework was used to reconstruct the annual frequency240

of five dominant Western U.S. weather regimes back to 1400 CE based on a gridded, tree-241

ring based reconstruction of cold season precipitation developed by A. P. Williams et al.242

(2020) and extended in Borkotoky et al. (2021). Specifically, the first four principal com-243

ponents of annual weather regime occurrence were reconstructed (termed PCWR in Gupta244

et al. (2022)), which effectively contained all of the information on the annual frequen-245

cies of the five WRs. In this study, these principal components are used to force a non-246

homogeneous hidden Markov model (NHMM), whereby WR states are modeled as a first-247

order Markov chain with a non-stationary transition probability matrix conditioned on248

the reconstructed PCWR from Gupta et al. (2022). The NHMM is fit to the first nine249

principal components of daily 500 hPa geopotential height from NOAA-CIRES-DOE Twen-250

tieth Century Reanalysis (V3) dataset (Slivinski et al., 2019) between 180-100°W and251

30-60°N (i.e., the Pacific/North American sector) from 1950-2017. The NHMM is forced252

with the four reconstructed principal components (PCWR) that overlap the same time253

period, defining a time-varying transition probability matrix shown in Equation 1:254

P (WRt = i|WRt = j,Xt = x) =
exp(β0j,i + β′

j,ix)∑K
k=1 exp(β0j,i + β′

j,ix)
(1)
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Here, the transition probability from WR i to WR j at time t is conditioned on X′
t =255

[PCWR1,t
, PCWR2,t

, PCWR3,t
, PCWR4,t

] a vector of daily covariates developed by repeat-256

ing the annual values of each for each day of the year. These covariates (Level 1 in Fig-257

ure 3) are used within a multinomial logistic regression with intercepts β0j,i and coef-258

ficients βj,i to define the transition probabilities, with a prime denoting the vector trans-259

pose. The fitted multinomial regression can be used to estimate the time-varying tran-260

sition probabilities and simulate WRs across the entire 600-year period over which re-261

constructed values of PCWR are available. More information on the NHMM can be found262

in Section S1. We use this method to create a 50-member ensemble of daily, 600-year263

weather regime time series (Level 2 in Figure 3; convergence plots of corresponding stream-264

flow available in Figure S1).265

Time 1 Time 2 Time t Time n

... ...

... ...

... ...

P1,T1 P2,T2 Pt,Tt Pn,Tn

WR1 WR2 WRt WRn

X1 X2 Xt
Xn

Surface 
Weather
(Level 3)

Weather
Regime
(Level 2)

Gupta et al. 
(2022) PCWR
(Level 1)

Thermodynamic
Climate Changes

Figure 3. Flow chart of the main components of the weather generator. Boundary forc-

ing variables (here the PCWR from Gupta et al. (2022)) influence the evolution of the discrete

weather regime time series. Surface weather is then conditioned upon the weather regime time

series. Thermodynamic climate changes (temperature increases and precipitation-temperature

scaling) are applied to the surface weather post-generation.

2.2 Generation of Local Surface Weather Conditioned on WRs266

Time series of daily surface weather are generated based on the simulated time se-267

ries of WRs (Level 3 in Figure 3). Here, observed daily precipitation, minimum, and max-268

imum temperature are taken from the 1/16° resolution gridded meteorological dataset269

of Livneh et al. (2015) for water years (WY) 1950-2013. These historical weather data270
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are block bootstrapped based on the sequence of simulated WRs to create new sequences271

of weather. For example, if the NHMM simulates a sequence of n consecutive days in272

WR i, an n-sized block of surface weather is resampled from the historical period that273

is also in WR i and that meets two other criteria: (1) the chosen historical block falls274

into a two-week window around the simulated day of the year; and (2) the day prior to275

the historical block is in the same precipitation state as the simulated day (wet or dry).276

The weather generator is run simultaneously across the five basins to create internally277

consistent (i.e., spatially correlated) weather across the region. Given their large syn-278

optic scale, we use the occurrence of an atmospheric river (taken from Gershunov et al.279

(2017)) to represent a common precipitation state across basins. The process is repeated280

for each ensemble until a full sequence of 600 years of daily minimum and maximum tem-281

perature and precipitation has been generated.282

Thermodynamic changes, in the form of shifts in temperature and precipitation scal-283

ing with warming, are imposed after surface weather is generated. Step changes in tem-284

perature between 0-4°C are added to each grid cell’s simulated temperature. Quantile285

mapping is used to scale the precipitation distribution with warming, whereby the up-286

per tail (99.9th percentile) of the non-zero precipitation distribution is made more in-287

tense, the lower tail of non-zero precipitation is suppressed downward, but the mean of288

daily precipitation is left unchanged. This scaling reflects an intensification of the pre-289

cipitation regime and is consistent with GCM-based projections of future precipitation290

in California (Michaelis et al., 2022). We consider 5 different scaling rates equivalent to291

0X (0% ◦C−1), 0.5X (3.5% ◦C−1), 1X (7% ◦C−1), 1.5X (10.5% ◦C−1), and 2X (14%292

◦C−1) the Clausius-Clapeyron (CC) scaling rate, which dictates how the moisture hold-293

ing capacity of the atmosphere scales with warming. That is, the 99.9th percentile of non-294

zero precipitation is scaled up by either 0% ◦C−1, 3.5% ◦C−1, 7% ◦C−1, 10.5% ◦C−1,295

or 14% ◦C−1, while the lower body of the distribution is scaled down accordingly to main-296

tain the same distribution mean. The range of selected scaling rates are derived from297

observational and model-based studies that most often indicate extreme precipitation-298

temperature scaling at the 1XCC rate, but occasionally suggest the possibility for sub-299

CC (0X, 0.5X) or super-CC (1.5X, 2X) scaling rates due to interactive effects between300

enhanced specific humidity and storm dynamics (Wasko et al., 2018; Martinkova & Ky-301

sely, 2020; Ali et al., 2022; Michaelis et al., 2022; Sun & Wang, 2022).302
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These scaling rates are combined with the different scenarios of warming, so that303

precipitation scaling is tied to the imposed temperature scenario and respects the ther-304

modynamic mechanism that drives precipitation change. We consider five scenarios of305

warming, including 0°C, 1°C, 2°C, 3°C, and 4°C above the climatological average. This306

range of warming was inferred from an ensemble of CMIP6 mid-century (2015-2050) pro-307

jections over central California under the SSP2-4.5 scenario, taken from CarbonPlan (see308

Figure S2; Chegwidden et al. (2022)). All together, we develop 25 different scenarios of309

climate change (5 temperature scenarios and 5 scaling scenarios), with each scenario con-310

taining 50 ensemble members (i.e., 50 stochastic 600-year time series of precipitation and311

temperature), in addition to a baseline ensemble with no changes imposed. Technical312

details on the quantile mapping procedure, and other details of the stochastic weather313

generator, are provided in Steinschneider et al. (2019) and Najibi et al. (2021).314

2.3 Generation of Regional Streamflow Through Process-Based Hydro-315

logic Models316

Surface weather ensembles are used to simulate daily streamflow ensembles at the317

mouth of each of the five San Joaquin subbasins using the Sacramento Soil and Mois-318

ture Accounting Model (SAC-SMA) (Burnash et al., 1995) coupled with a SNOW-17 model319

(Anderson, 1976). The models, documented in Wi and Steinschneider (2022), are spa-320

tially distributed and utilize a Lohmann routing model Lohmann et al. (1998) to trace321

runoff from hydrologic response units (HRUs) through each river channel. The SAC-SMA322

models are calibrated using a pooled calibration approach (Wi et al., 2015) based on the323

average Nash Sutcliffe Efficiency (NSE) across the five subbasins simultaneously. Cal-324

ibration and evaluation was based on historical Full Natural Flows (FNF) between WY325

1989-2013, acquired from California Data Exchange Center (CDEC) FNF stations that326

lie within each subbasin: Tuolumne River at La Grange Dam (TLG), Friant Dam on Miller-327

ton Lake (MIL), Merced River near Merced Falls (MRC), New Hogan Lake (NHG), and328

New Melones Reservoir (NML) (G. Huang & Kadir, 2016). The models are calibrated329

over WY 1989-2003 and then evaluated across WY 2004-2013.330

To verify that our streamflow extremes and variance decomposition results are not331

strongly dependent on the selection of the SAC-SMA model, we also employ the HY-332

MOD conceptual hydrologic model (HYMOD; (Moore, 2007)) specifically in the Tuolumne333

Basin. Our primary results will be presented using the SAC-SMA model but more de-334
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tailed analysis of how hydrologic model selection impacts the estimates of flood and drought335

metrics as well as their partitioning of variance is provided in Section S2. More infor-336

mation about the calibration process and parameter values for all hydrologic models can337

be found in Wi and Steinschneider (2022).338

2.4 Metrics of Hydrologic Extremes339

A series of flood and drought metrics, described below, are calculated for each en-340

semble member and each climate scenario and across two time horizons: 30 and 100 years.341

As stated in the latest update to the Central Valley Flood Protection Plan (CVFPP),342

the state of California is actively prioritizing investments in flood management over a343

30-year planning horizon (California Department of Water Resources, 2022). A 100-year344

planning horizon is not actively used in the CVFPP, but it represents a time scale rel-345

evant to longer term major infrastructure investments. Further, it allows the exploration346

of the longer climate time horizon drivers. We partition the variance of each metric be-347

tween the drivers of climate change and natural climate variability using the ensemble348

of scenarios described above. Appendix A contains a glossary with commonly used terms349

that are referred to through the methods. Appendix B contains a summarized list of all350

of the flood and drought metrics used in this study, including their decision relevance.351

2.4.1 Flood Metrics352

Flows associated with a 10-year and 100-year return period are used as flood met-353

rics in this study. The 100-year floodplain currently drives larger riverine infrastructure354

development and flood risk management in California (California Department of Wa-355

ter Resources, 2022). Though not as common for current planning and management in356

California, the 10-year return period flow captures risk to smaller floodplains and drives357

smaller investments (California Department of Water Resources, 2006). The decadal and358

centennial flood are estimated by fitting a generalized extreme value (GEV) distribution359

to the three-day annual maxima at each CDEC gauged location in the five subbasins.360

The three-day flood was chosen because it a common metric used in flood risk assess-361

ments in California (California Department of Water Resources, 2006; Chung, 2009; Brekke362

et al., 2009; Maurer, Brekke, & Pruitt, 2010; Maurer, Hidalgo, et al., 2010), and because363

it better captures the concurrence of flooding across multiple basins (described further364
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in section 2.4.3). For each ensemble member, we fit the GEV distribution for the whole365

600-year paleo-period as well as across smaller 30-year and 100-year moving windows.366

2.4.2 Drought Metrics367

There is no state statutory definition of drought since it can be classified differently368

across impacted sectors and stakeholders. Historical hydrologic droughts have been tra-369

ditionally identified based on a combination of metrics that capture the magnitude and370

duration of water deficit at key reservoirs (California Department of Water Resources,371

2015). Since we develop metrics for gauged locations near these reservoirs, we opt to use372

a more generalized Standardized Streamflow Index (SSI) to quantify hydrologic drought373

(Vicente-Serrano et al., 2012). To calculate the SSI, daily simulated flows are first ag-374

gregated to a monthly time step. We then use a flexible non-parametric empirical method375

to estimate non-exceedance probabilities using the Gringorten plotting position (see Farahmand376

and AghaKouchak (2015)). To create the SSI, the associated non-exceedance probabil-377

ities are passed through the quantile function of the standard normal distribution, re-378

sulting in a series with an assumed mean of zero and standard deviation of one. We then379

use the SSI index to define three drought metrics, following McKee et al. (1993):380

1. Drought Occurrence: The number of months characterized by an SSI value less381

than -1, divided by the total months in the window over which the metric was calculated.382

An SSI value of less than -1 captures moderate to severe drought hazard.383

2. Drought Intensity: The minimum SSI value in the moving window.384

3. Drought Duration: The maximum number of consecutive months with an SSI385

below -1.5 in the moving window. An SSI value of less than -1.5 captures severe drought386

hazard.387

The SSI index is calculated for each ensemble member and climate change scenario,388

and the metrics are reported across 30-year and 100-year moving windows.389

2.4.3 Copula-Based Flooding Metrics390

The San Joaquin basin is a key component in the state’s comprehensive water de-391

livery system, and a levee breach due to compounding flooding across subbasins in the392

region could disrupt deliveries of irrigation water to 3 million acres of farmland in the393
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Central Valley (Taylor, 2017). Thus, we develop a spatially-compounding flood metric394

to capture this hazard. As discussed in Zscheischler et al. (2020), spatially compound-395

ing flood hazard can be characterized using an n-dimensional Gaussian copula that de-396

fines a metric of joint flood hazard across n basins simultaneously. Let xt,1,. . . , xt,n be397

the annual maxima of 3-day mean streamflow in each of the n basins in year t. We first398

fit GEV distributions to the individual three-day annual maxima for each basin (i =399

1, . . . , n). The three-day annual maxima in each year t are then transformed to be uni-400

form pseudo-observations, ut,i = F−1
GEV (xt,i) , where F−1

GEV is the inverse cdf of the fit-401

ted GEV distribution for basin i. These pseudo-observations are used to evaluate the402

joint CDF of the flood data based on a Gaussian copula:403

C(ut,1, ..., ut,n) = P (U1 ≤ ut,1, ..., Un ≤ ut,n) = Φn(ϕ
−1(ut,1), ..., (ϕ

−1(ut,n)|Σ) (2)

Here, ϕ−1 is the inverse CDF of the standard normal distribution and Φn(·|Σ) is404

the multivariate normal CDF with zero mean and correlation matrix Σ, which is set equal405

to the Spearman rank correlation matrix for three-day annual maxima across basins. Us-406

ing the fitted copula, we can then calculate the joint probability that multiple subbasins407

experience flooding above some threshold. For example, consider two subbasins with 100-408

year flood magnitudes of x1 and x2, respectively, inferred from their fitted (GEV) marginal409

distributions. Then, the probability that both subbasins simultaneously experience floods410

that exceed the 100-year flood is equal to (Zhang & Singh, 2019):411

P (X1 > x1, X2 > x2) = 1− P (X1 ≤ x1)− P (X2 ≤ x2) + P1,2(X1 ≤ x1, X2 ≤ x2) =

1− FGEV 1(x1)− FGEV 2(x2) + Φn(ϕ
−1(FGEV 1(x1)), ϕ

−1(FGEV 2(x2))|Σ) (3)

Similar calculations are available to evaluate the probability that three or more basins412

experience flooding above set thresholds. These probabilities can be used directly as a413

metric of joint flood hazard, and we can partition the variance of this metric between414

climate changes and natural variability across our ensemble and for 30-year and 100-year415

moving windows.416
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2.5 Analysis of Variance in Hydrologic Metrics417

We use an ANOVA to partition the variance in the hydrologic flood and drought418

metrics above into components attributable to different sources of variation. A two-way419

ANOVA was used to determine the uncertainty in hydrologic metrics attributable to un-420

certainty in temperature change (T ), precipitation scaling rate (P ), their interactions,421

and uncertainty in metrics attributable to natural variability. The temperature change422

factor has i = 1, . . . , 5 levels (0, 1, 2, 3, 4 ◦C), and precipitation scaling factor has j=1,. . . ,5423

levels (0%, 3.5%, 7%, 10.5%, 14% per °C). For each combination of levels, there are 50424

stochastic realizations of the metric of interest. The linear model on which the ANOVA425

is based is given as:426

x(i, j, s) = µ+ α(i) + β(j) + γ(i, j)TP + ε(i, j, s) (4)

Where x(i, j, s) is the hydrologic metric for a given level i and j of factors T and427

P , respectively, and a given ensemble member s. The grand mean for the metric x across428

the entire ensemble is µ; α(i) equals the average deviation in x from µ for ensemble mem-429

bers with temperature changes at level i; β(j) equals the average deviation in x from µ430

for ensemble members with precipitation scaling rate at level j; γ(i, j)TP is the inter-431

action term between temperature change and precipitation scaling; and ε(i, j, s) is the432

error term, which is used here to represent natural variability in the metric not explained433

by the different climate change factors. The total sum of squares SStotal expresses the434

total variation in the hydrologic metric x, and is comprised of the sum of variation at-435

tributable to temperature change (SST ), precipitation scaling rate (SSP ), their inter-436

action (SSInt), and natural variability (SSε):437

SStotal = SST + SSP + SSInt + SSε (5)

The fraction of variance attributable to each source is calculated by dividing each438

component by SStotal. This fraction of attributable variance is calculated separately in439

30-year and 100-year rolling windows for each of the metrics above.440
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3 Results441

The results of this work are presented as follows. First, Section 3.1 shows a com-442

parison of the variability in the paleo-informed streamflow with events from the avail-443

able observed historical record. Then, Section 3.2 shows the flood and drought extremes444

reconstructed for the baseline scenario (i.e., influence of natural variability alone). Sec-445

tion 3.3 demonstrates how the imposed climate changes affect those extremes. Section446

3.4 demonstrates the variance partitioning of extremes across climate change and nat-447

ural variability. A more detailed evaluation of the stochastic weather generator’s per-448

formance is presented in the Supporting Information (see Figures S3-S7), which demon-449

strates how well the generator captures characteristics of precipitation and minimum and450

maximum temperature.451

3.1 Paleo-Informed Streamflow Characteristics452

Figure 4 demonstrates the broader variability that is attained in the streamflow453

ensembles when SAC-SMA is forced with paleo-reconstructed weather at the Don Pe-454

dro gauge in the Tuolumne Basin. Figure 4a focuses on 7-day flows and the lower tail455

of the distribution and Figure 4b zooms in on the upper tail distribution of 3-day flows.456

Each grey line represents sorted flow volumes across 30-year chunks of the paleo-reconstruction457

across all 50 ensemble members. These volumes are compared with those that come from458

forcing the generator over the modern period (1987-2013) with historical Livneh precip-459

itation and temperature data (red line). Key events from the observed record are an-460

notated as colored horizontal lines. Overall, the paleo-informed streamflow envelopes and461

expands upon the historical SAC-SMA model flows by creating instances of wetter 3-462

day flows and drier 7-day flows. Furthermore, the paleo-ensemble is characterized by drier463

events than key drought periods from the observed record as demonstrated in Figure 4a.464

The generator is unable to create 3-day flows that reach the peak of the 1997 New Year’s465

flood period due to underestimation of precipitation associated with this storm that is466

a known error in the Livneh dataset (Pierce et al., 2021). In turn, models conditioned467

on the Livneh dataset tend to underestimate the flows associated with this event. How-468

ever, the inclusion of the paleo-reconstruction allows the generator to create flows that469

far surpass the magnitude of peak flows associated with the 1995 and 2017 floods. Over-470

all, the expanded envelope of daily scale streamflows enabled by the paleo-reconstruction471

provide rich context for exploring plausible flood and drought extremes in the Tuolumne472
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Basin. Figure S9 demonstrates similar results for the rest of the San Joaquin River basins,473

particularly in capturing drought dynamics. The generator conditioned on the Livneh474

dataset suffers from the same difficulty of capturing the 1997 flood peak flows; however,475

in some basins like Merced and Millerton, the paleo-conditioned generator provides ex-476

tended variability that can help overcome these limitations (Figures S9b,d). New Hogan477

Lake is the only gauged location in which the Livneh-conditioned model can capture the478

1997 flood peak flows, but this is primarily because the associated peak flows were not479

as extreme in this region relative to other notable flooding events. Of the five basins, cap-480

turing dynamics in the Tuolumne is the most challenging; it is also representative of high-481

elevation basins that exhibit rich snow dynamics. Thus, we proceed through the rest of482

the results with a focus on the Tuolumne Basin, though corresponding figures for the rest483

of the basins can be found in the supplement. Section 3.2 further elaborates on the value484

of the paleo-forced generator and its representation of key flood and drought metrics through485

the reconstruction.486

a) b)

1997 Flood (Day 2)

1997 Flood (Day 1)

1997 Flood (Day 3)

2017 Flood Peak Flow 

1995 Flood Peak Flow

2002-2003, 1986-1992 Droughts

2012-2016 Drought

Figure 4. a) 7-day and b) 3-day flow volumes at the Don Pedro gauge in the Tuolumne Basin

derived from the paleo-informed streamflow ensembles compared to the Livneh-forced generator

over the modern period. Key events from the observed record are shown as colored lines. Each

grey line represents sorted volumes for each year in 30-year chunks of the paleo-reconstruction

across all 50 ensemble members.

3.2 Reconstruction of Natural Variability in Extremes487

3.2.1 Individual Basin Flood Hazards488

The individual Tuolumne subbasin flood hazard is quantified based on the 10-year489

and 100-year flood events associated with 3-day annual maximum flows, calculated us-490
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ing a GEV distribution fit to 3-day maxima in each basin and with two moving windows491

of length 30 and 100 years. Figures 5a and 5c show these return levels at the Don Pe-492

dro gauge in the Tuolumne Basin using a 30-year moving window. The return levels are493

calculated for all ensemble members of the baseline generator, where the solid line rep-494

resents the mean return level across the ensemble members and the shading represents495

the 5th/95th percentiles. Figures 5b and 5d are non-exceedance plots of the three-day496

annual maxima across the extent of the paleo-reconstruction ensemble. The dashed black497

line represents the three-day annual maxima associated with the 10-year and 100-year498

return period events as derived from the SAC-SMA model forced with Livneh histori-499

cal precipitation and temperature that overlaps with the observed record (1987-2013).500

In order to facilitate the most equivalent comparison between the two datasets, each gray501

line represents the sorted three-day annual maxima volumes over sets of 30-year segments502

of the paleo-reconstruction and across all 50 ensemble members.503

The return levels in Figures 5a,c both show clear peaks centered around 1600 CE,504

which highlights a prominent pluvial period in the region’s past hydroclimate. This plu-505

vial is represented in the original WR reconstruction from Gupta et al. (2022) and broadly506

confirmed by other reconstructions (D’Arrigo & Jacoby, 1991; Schimmelmann et al., 1998;507

Stahle et al., 2007; M. D. Dettinger & Ingram, 2013). M. D. Dettinger and Ingram (2013)508

have also reconstructed pluvials around 1750-70 CE and 1810-20 CE, and while less pro-509

nounced than the 1600s pluvial, both panels a) and c) show increases in three-day an-510

nual maxima during these times. When compared to the model-based modern hydrol-511

ogy (dashed black line), both figures suggest that return levels in the most recent 30-512

year period are lower than those that have been experienced in prior centuries of the paleo-513

period reconstruction. Panels b) and d) show the modern estimates of the three-day an-514

nual maxima for the 10-year and 100-year events respectively, in comparison with the515

extent of the three-day annual maxima created by the paleo-informed generator. The516

ensemble from the generator encompasses the modern estimates of the return levels and517

also provides many instances of more extreme flooding events, which provides additional518

challenging flood scenarios that can be used to understand the vulnerability of water sys-519

tems in each of the Central Valley subbasins explored in this study. As shown in Fig-520

ure S10, the rest of the basins display similar three-day annual maxima dynamics, though521

the magnitude of the flows differs across all basins and return periods. Lower peak flows522

tend to be associated with basins that are smaller in area, elevation, and slope (i.e., New523
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10-Year Event 

100-Year Event 

a)

c)

b)

d)

Paleo-Forced
Livneh-Forced

Paleo-Forced
Livneh-Forced

Figure 5. Three-day annual maxima associated with the a) 10-year return period event and

c) 100-year return period event for the Don Pedro gauge in the Tuolumne subbasin calculated

in 30-year moving windows and across the time period from 1400-2017. The dark green line rep-

resents the mean flooding return levels and the shading represents the 5th and 95th percentile

confidence bounds. Panels b) and d) are non-exceedance plots of the three-day annual maxima

across the extent of the paleo-reconstruction ensemble. Each gray line represents the sorted

three-day annual maxima volumes for each year in a 30-year segment of the paleo-reconstruction.

The dashed black line represents the three-day annual maxima associated with the 10-year and

100-year return period events as derived from the SAC-SMA-simulated peak flows when forced

with Livneh historical data (1987-2013).

Hogan Lake, Table S1). The ensemble member spread also tends to be larger for the more524

extreme and uncertain 100-year flood event. Panels a) and c) exhibit clear non-stationary525

tendencies in the representation of the 10-year and 100-year event across the reconstruc-526

tion that have large implications for hazard characterization. For example, the flow vol-527

umes associated with the 10-year event during the 1600s wet period are within range of528

the 100-year event flows during the 1500s megadrought period. Thus, what may be con-529

sidered a 10-year flood event in one wet period transitions to be a 100-year event in a530
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dry period. This extent of variability uncovered in the flood metric demonstrates that531

using only the modern record to define design flood events could severely under-represent532

flood hazard in the Central Valley region and that defining hazard based off of the 10-533

year and 100-year flooding events has drastically changed over time.534

3.2.2 Individual Basin Drought Hazards535

Figures 6a,c,e show the three SSI-based hydrologic drought metrics (occurrence,536

duration, and severity) calculated across a 30-year moving window for the period of 1400-537

2017 for the Don Pedro gauge in the Tuolumne River Basin. Figures 6b,d,f are non-exceedance538

plots, where each line corresponds to the sorted drought metric values derived across the539

whole reconstructed 617-year record length for each of the 50 ensemble members. The540

dashed line represents the respective metric values derived from the SAC-SMA model541

flows forced with Livneh historical precipitation and temperature across the length of542

the modern record. Similar to the flooding metrics in Section 3.2.1, the drought met-543

rics exhibit clear decadal-scale variability that is also present in the original WR recon-544

struction from Gupta et al. (2022). For example, Figures 6a,c,e show declines in drought545

occurrence, severity, and duration during the early 1600s pluvial, while these drought546

characteristics become more intense during the 1500s megadrought that lasted from the547

middle of the century to the late 1580s (Stahle et al., 2007). The rest of the San Joaquin548

subbasins display this key behavior as well (Figure S11). The drought metrics reveal a549

slight long-term trend toward higher drought occurrence, longer duration, and more in-550

tense drought severity through the last three centuries of the reconstruction. This trend551

could, in part, be driven by key persistent drought periods that occurred in the mid to552

late 1800s (1856-1865, 1870-1877, and 1890-1896; Herweijer et al. (2006)), the 1900s (the553

Dust Bowl in the 1930s and drought periods in the 1950s and late 1980s; (Stahle et al.,554

2007)) and the most recent 20-year drought periods in the 2000s. The black line demon-555

strates drought occurrence and severity that is on par with the late 1500s megadrought,556

though exhibiting a slightly shorter duration than a large section of the paleo-reconstruction.557

The shorter drought duration is likely due to the sporadic periods of wet weather that558

have characterized the most recent 30-year period, including the early 1980s and late 1990s559

(M. Dettinger & Cayan, 2014) and periods after each drought instance in the 2000s.560

Panels b), d), and f) compare the modern drought metrics to those calculated from561

the paleo-reconstructed ensembles. The ensembles encompass the modern estimates and562
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Drought Occurrence 

Drought Severity

Drought Duration

a) b)

c) d)

e) f )

Paleo-Forced
Livneh-Forced

Paleo-Forced
Livneh-Forced

Figure 6. SSI-based hydrologic drought metrics of a) occurrence c) severity, and d) duration

for the Don Pedro gauge in the Tuolumne Basin calculated in 30-year moving windows and across

the time period from 1400-2017. The dark tan line represents the mean drought metric value

and the shading represents the 5th and 95th percentile bounds. Panels b),d), and f) are non-

exceedance plots of the three-day annual maxima across the extent of the paleo-reconstruction

ensemble. Each gray line represents the sorted three-day annual maxima volumes across the

length of the paleo reconstruction. The dashed black line represents the metric values as derived

from the SAC-SMA-simulated peak flows associated with the modern record (1987-2013).
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also provides many traces that are characterized by more frequent, longer, and severe563

drought. The plausibility of the Central Valley subbasins confronting drought conditions564

that extend well beyond those that have been experienced in the modern observed record565

captured in Livneh forcing data is significant even in the absence of climate change. The566

traces in panels b), d), and f) emphasize the need to better characterize the subbasin567

systems vulnerabilities for the challenging drought conditions that are captured within568

the reconstruction.569

3.2.3 Joint Flood Hazard Across Basins570

Gaussian copulas were fit to the 3-day annual maxima flows for multiple combi-571

nations of basins to characterize joint flood dynamics. The joint probability of flows at572

Don Pedro in the Tuolumne Basin and at Millerton Lake in the Millerton Basin simul-573

taneously exceeding their respective, GEV-based 100-year flood estimates from the most574

recent 30-year period from 1987-2017 was calculated for the length of the reconstruction.575

Figure 7a shows the expected return period associated with those probabilities. Figure576

7b includes New Melones Lake into the joint probability estimation. The return peri-577

ods are calculated using a 30-year moving window across the entire reconstruction. Pan-578

els c) and d) are non-exceedance plots of the respective return periods across the extent579

of the paleo-reconstruction ensemble. The dashed black line represents the return pe-580

riods for the 10-year and 100-year flood derived from the SAC-SMA model forced with581

Livneh historical precipitation and temperature. As with the flood metrics, in order to582

facilitate the most equivalent comparison between the two datasets, each gray line rep-583

resents the sorted return periods for 30-year segments of the paleo-reconstruction and584

across all 50 ensemble members.585

As demonstrated in Figure 7, there is a strong increase in the likelihood of simul-586

taneously exceeding the recently observed historical estimate of the 100-year event, par-587

ticularly during the 1600s wet period (∼20% increase in likelihood). That is, the expected588

frequency of occurrence of simultaneous 100-year flooding events in both the Tuolumne589

and Millerton jumps to once every 320 years, as compared to once every 405 years in the590

most recent 30-year period. There is also a significant decline in the likelihood of joint591

flooding during the late 1500s megadrought. When an additional basin is introduced into592

the copula-based metric, the overall temporal dynamics are similar (Figure 7b), but the593

expected return period increases significantly. That is, the likelihood of simultaneously594
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Tuolumne and Millerton
Tuolumne, Millerton, and New Melones

a)

d)
c) d)

Tuolumne, Millerton, and New Melones

b)

Paleo-Forced
Livneh-Forced

Paleo-Forced
Livneh-Forced

Figure 7. The expected return periods associated with the joint probability of simultaneously

exceeding historical 100-year flood flows at a) Don Pedro (Tuolumne Basin) and Millerton Lake

(Millerton Basin), and c) including New Melones (Stanislaus Basin) calculated in 30-year moving

windows across the time period from 1400-2017. The dark turquoise line represents the average

return period respectively across the ensemble, and the shading represents the 5th and 95th per-

centile bounds. Panels b) and d) show the non-exceedance plots for the return periods derived

across the whole paleo-reconstruction in 30-year segments. The dashed black line represents the

return periods as derived from the SAC-SMA-simulated peak flows associated with the modern

record (1987-2013).

exceeding historical flooding thresholds rapidly declines as more basins are considered.595

During the 1600s wet period, the expected frequency of occurrence of simultaneous 100-596

year flooding events in the Tuolumne, Millerton, and New Melones jumps to once ev-597

ery 450 years, as compared to once every 507 years in the most recent 30-year period.598

For both joint flood metrics, the paleo-reconstruction effectively bounds the modern es-599

timation of the return periods, which provides a richer space to characterize joint flood600

hazards across the subbasins (Figures 7c and 7d).601
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Similar non-stationary dynamics as observed in the flooding metrics in Section 3.2.1602

are apparent in these joint flooding metric as well. Simultaneous flooding in all three basins603

is rarer and more consequential for water systems planning and management than simul-604

taneous flooding in the Tuolumne and Millerton alone. Figures 7a-b demonstrate that605

through the paleo-reconstruction, there are periods (like the 1600s wet period) where the606

likelihood of flooding in the three basins becomes just as common as flooding in the Tuolumne607

and Millerton alone (around the late 1500s megadrought). The additional variability that608

the reconstruction provides demonstrates how dramatically the return periods associ-609

ated with these consequential events changes over time, particularly how these flooding610

events can become more frequent. Once again, using the modern record to quantify joint611

hazard across these subbasins could severely underrepresent flood hazards and the mag-612

nitude of design events.613

3.3 Effects of Thermodynamic Climate Change on Hydrologic Extremes614

3.3.1 Changes in Individual Basin Flood Hazard615

Figure 8 shows the effect of thermodynamic climate changes on the 100-year, 3-616

day flood event in the Tuolumne calculated across 30-year moving windows. The flow617

volumes are represented as deviations from the baseline reconstruction which is shown618

as a gray dashed line at 0. A modern baseline is placed as a dashed black line and is rep-619

resentative of the difference between the modern and the largest 100-year flood event vol-620

ume calculated across the reconstruction. Figure 8a shows scenarios where the precip-621

itation scaling rate is kept at 7% ◦C−1 while temperature is increased by 1, 2, and 3 ◦C,622

while Figure 8b shows scenarios where the temperature trend is maintained at 1°C and623

the precipitation scaling rate is increased to 0% ◦C−1, 7% ◦C−1, and 14% ◦C−1. Both624

increasing precipitation scaling rates and temperature trends shift the 100-year flood peak625

flows upwards, though temperature trends have a stronger impact. For reference, the vol-626

ume differential between the extreme scenarios in Figure 8a is equivalent to about 100627

Oroville Dams worth of water. Conversely, the maximum volume differential associated628

with the precipitation scaling in Figure 8b is equivalent to 33 Oroville Dams worth of629

water. The Tuolumne is a snow-dominated basin, and consequently it is not unexpected630

that the results suggest a greater influence on 100-year flows resulting from increasing631

temperature rather than increased precipitation scaling. Increased temperature shifts632

drive increased snowmelt and rain on snow events that promote greater flood volumes.633
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a) b)

3T, 1xCC 2T, 1xCC 1T, 1xCC 1T, 2xCC 1T, 1xCC 1T, 0xCC

Paleo-Forced Baseline

Livneh-Forced Baseline

Figure 8. The effect of increasing a) temperature and b) precipitation scaling rates on 100-

year, 3-day flood flows at Don Pedro (Tuolumne Basin). The dark green lines represent the

increase in mean flooding return levels with respect to the baseline scenario (gray line at 0) and

the shading represents the 5th and 95th percentile bounds. A modern baseline (black line) is in-

cluded as reference and represents the distance from the modern peak flow to the maximum peak

flow recorded in the reconstruction.

3.3.2 Changes in Individual Basin Drought Hazards634

Figure 9 shows how the same thermodynamic scenarios imposed in Section 3.3.1635

influence drought occurrence in the Tuolumne Basin, measured in terms of a change in636

the percent of the 30-year window that is classified to be in drought conditions with re-637

spect to the baseline scenario (gray dashed line at 0). A modern baseline is placed as638

a dashed black line and is representative of the difference between the modern drought639

occurrence line from Figure 6a and the worst drought occurrence metric calculated across640

the reconstruction. An increase in each of the thermodynamic mechanisms tends to in-641

crease the percentage of the window classified in drought. A comparison across Figures642

9a and 9b show the larger impact of temperature trends on increased drought occurrence643

(reaching up to 5% or an additional 18 months classified in drought) by way of increased644

evapotranspiration. Precipitation scaling stretches the daily precipitation distribution645

which can lead to tail influences that impact the total number of drought months, but646

has a lower relative influence (reaching up to 1.8% or an additional 6 months classified647

in drought). For example, there are some instances, particularly in the 1T, 1xCC sce-648

nario in Figure 9a that result in values that approach the baseline. This is likely due to649

the precipitation scaling mechanism causing some months to have an increased SSI above650

the drought threshold that offsets the temperature increase. However, as the temper-651
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ature shift further increases, this effect is dominated. Figure S12 shows the same results652

for drought severity and duration. Overall, there is a greater influence from increasing653

temperature trends to increasing drought severity and duration. It’s worthwhile to note654

that the impact from both temperature trends and precipitation scaling is relatively small655

(Figure S12c,d) with respect to increasing consecutive months classified in severe drought656

and these results are further reflected in Figure 12.657

a) b)

3T, 1xCC 2T, 1xCC 1T, 1xCC 1T, 2xCC 1T, 1xCC 1T, 0xCC

Livneh-Forced Baseline

Paleo-Forced Baseline

Figure 9. The effect of increasing a) temperature and b) precipitation scaling rates on

drought occurrence at Don Pedro (Tuolumne Basin). The dark brown lines represent the in-

crease in the percentage of the 30-year window classified in drought conditions with respect

to the baseline scenario (grey line at 0) and the shading represents the 5th and 95th percentile

bounds. A modern baseline is included (black line) as a reference and represents the distance

from the modern drought occurrence metric to the worst drought occurrence recorded in the

reconstruction.

3.3.3 Joint Flood Hazard Across Basins658

Figure 10 shows how similar thermodynamic scenarios influence joint flood haz-659

ard at Don Pedro (Tuolumne Basin) and Millerton Lake (Millerton Basin), measured in660

terms of change to return period associated with the 100-year event with respect to the661

baseline scenario (gray dashed line at 0). As with the prior sections, a modern dashed662

black baseline is included to represent the difference between the modern return period663

estimate and the lowest return period calculated across the reconstruction. Much like664

Figure 8, Figure 10 demonstrates a larger influence from increasing temperature trends665

on making compound flooding events more likely (Figure 10a). Given that the Tuolumne666

and Millerton are both snow-dominated basins, temperature trends create similar snowmelt667
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effects that lead to simultaneous flooding events. Precipitation scaling has a relatively668

reduced, but non-trivial effect (Figure 10b). The greatest influence from precipitation669

scaling is observed under higher imposed temperature trends (we use a constant 3°C tem-670

perature trend in this example). While an increase in precipitation scaling increases the671

likelihood of flooding in any given basin (Figure 8b), Figure 10b demonstrates that it672

decreases the likelihood of joint flooding, and makes the events rarer by increasing the673

return period. Since the imposed precipitation scaling non-linearly adjusts peak flows,674

it ultimately leads to a decrease in correlation in flows across the two basins and there-675

fore a decrease in joint flooding tendencies.676

a) b)

3T, 1xCC 2T, 1xCC 1T, 1xCC 3T, 2xCC 3T, 1xCC 3T, 0xCC

Livneh-Forced Baseline

Paleo-Forced Baseline

Figure 10. The effect of increasing a) temperature and b) precipitation scaling rates the

change in return period associated with simultaneously exceeding historical 100-year-day flood

flows at Don Pedro (Tuolumne Basin) and Millerton Lake (Millerton Basin). The dark blue lines

represent the change in return period with respect to the baseline scenario (gray line at 0) and

the shading represents the 5th and 95th percentile bounds. A modern baseline (black line at 0) is

included as reference and represents the distance from the modern return period to the shortest

return period recorded in the reconstruction.

3.4 Variance Partitioning of Hydrologic Extremes677

The results above show how different metrics of hydrologic extremes vary signif-678

icantly over time due to natural climate variability as well as different mechanisms of cli-679

mate change. Below we use variance partitioning to assess the relative importance of these680

competing factors.681
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3.4.1 Relative Variance Contributions for Individual Basin Flood Haz-682

ard683

We conduct an ANOVA to partition the variance of the 10-year and 100-year 3-684

day floods for each gauged location. Figure 11 shows the results for Don Pedro, while685

results for the other sites are shown in Figure S13-S16. The columns show the results686

of the decomposition when flood metrics are derived with a 30-year, 100-year, and 617-687

year (whole record) time horizon, respectively.688
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Figure 11. A decomposition of the key drivers of variance in the flood metrics for the Don

Pedro gauge in the Tuolumne River Basin for an a,d) 30-year time horizon b,e) 100-year time

horizon and c,f) a 617-year time horizon.

Two main insights emerge from Figure 11. First, natural variability is the primary689

driver of the variance when the flood metrics are calculated using a 30-year time hori-690
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zon (Figures 11a,d). This is especially true for the 100-year flood, where approximately691

70% of the variance in this metric is associated with natural variability. Figure 11d has692

direct relevance to the design standards actively used to inform California’s flood plan-693

ning and management. However, the influence of natural variability on the spread in flood694

metrics across the ensemble substantially decreases when the metric is calculated across695

a 100-year time horizon (Figures 11b,e), and becomes almost negligible when calculated696

over the entire 617-year period (Figures 11c,f). This suggests that the time horizon over697

which the flood metrics are calculated highly influences the perception of key drivers.698

A longer time horizon more clearly captures the effects of longer-term climate change699

on the variation in the flood metrics, while during shorter windows the variation in flood700

metrics across the ensemble is more likely to capture noise associated with natural vari-701

ability. The reasons for this are twofold. First, when the time horizon is large, each en-702

semble member for a particular climate change scenario contains many annual maxima703

that are all drawn from the same underlying climate state, helping to converge design704

event estimates across ensemble members towards similar values. Second, when the time705

horizon is large, there are more opportunities for climate change signals to influence the706

distribution of annual maxima flows for all ensemble members under a given climate change707

scenario, which will help separate the distribution of annual maxima across the differ-708

ent scenarios. Together, these two factors will lead to more variance in the overall en-709

semble being explained by the climate change scenarios compared to natural variabil-710

ity.711

Of the thermodynamic changes, temperature trends are the primary driver of vari-712

ation in peak flows, followed by precipitation scaling. This result, also seen in Figure 8,713

suggests that temperature increases that lead to increased snowmelt and rain on snow714

events influences peak flows in the region more than increases in extreme precipitation715

due to increased moisture in the atmosphere. The interactions between the two drivers716

generally accounts for a smaller percentage of the variance, but as the time horizon in-717

creases, interactive effects are close to the same magnitude as precipitation scaling (16%718

vs. 24% for the whole period). This result highlights how the effects of precipitation scal-719

ing are dependent on the temperature increase, because precipitation scaling is param-720

eterized as a percentage change in extreme precipitation per °C warming.721

Figure S13-S16 show the same results for the remaining four basins. Overall, all722

basins exhibit similar behavior, where the influence of natural variability decreases with723
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time horizon. Temperature change has a larger impact than precipitation scaling in all724

basins except for New Hogan Lake (Figure S15). New Hogan Lake is relatively small,725

has a low elevation, and less snow dominated compared to the other basins (Table S1),726

and thus sees a greater influence from precipitation scaling on flood variability.727

Overall, the results in Figure 11 portray conflicting storylines and complexity for728

flood planning and management depending on the way the flood metrics are defined. Un-729

der current CA planning conditions (represented in Figure 11d), the greater influence730

of natural variability on individual flood hazard would suggest prioritizing short-term731

adaptive tools like seasonal forecasts. However, under alternative planning scenarios that732

may utilize longer time horizons, infrastructure investments look to be more useful to733

manage hazards from thermodynamic climate changes. Most importantly, water plan-734

ners will need to engage with both drivers; prioritizing longer horizons of focus could ne-735

glect the effects of internal variability in the near term, which as Figure 5 portrays, can736

lead to magnitudes of peak flows that far surpass those in the modern record. Ultimately,737

there needs to be consideration of both the exceptional magnitude of internal variabil-738

ity in more immediate decision relevant 30-year timescales while still being cognizant of739

the longer-term climate changes. Thus, it’s important for water resources agencies that740

utilize dynamic and adaptive planning methods to effectively balance the value, resilience,741

and potential regrets of near term investments (e.g. Haasnoot et al. (2013); Schlumberger742

et al. (2022)).743

3.4.2 Relative Variance Contributions for Individual Basin Drought Haz-744

ards745

Figure 12 shows the ANOVA decomposition for drought occurrence, intensity, and746

duration for 30-year and 100-year moving windows, as well as the entire 617-year period.747

The variance partitioning for drought occurrence follows a similar pattern to the flood748

metrics above (Figures 12a-c). For short time horizons of 30 years, about 20-40% of drought749

occurrence variability across the ensemble is associated with natural variability. How-750

ever, as the time horizon grows, more variance is partitioned to the climate changes, and751

for extremely long horizons, almost all of the variance in drought occurrence across the752

ensemble is associated with climate change. Specifically, temperature change becomes753

the near-sole driver of drought occurrence variability, likely because of the strong increases754

in evapotranspiration with warming that drive drought occurrence.755
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Figure 12. A decomposition of the key drivers of variance in the drought metrics for the Don

Pedro gauge in the Tuolumne River Basin for a,d,g) 30-year window b,e,h) 100-year window and

c,f,i) a 600-year window.

For drought intensity, we see a similar pattern in variance partitioning between nat-756

ural variability and climate change factors, but the magnitude and degree of change in757

the variance partitioning more heavily favors natural variability (Figures 12d-f). For 30-758
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year windows, natural variability accounts for upwards of 80% of the total variance in759

drought intensity, and this falls to the (still substantive) value of 28% when the window760

reaches 617 years. Of the climate changes, temperature trends once again are the main761

driver, but precipitation scaling and interactive effects also play an important role in drought762

intensity variability across the ensemble. Given that the mechanism of precipitation scal-763

ing stretches the daily precipitation distribution such that large precipitation values be-764

come larger and small precipitation values become smaller, we see a more significant in-765

fluence from this mechanism on drought intensity than in the other metrics.766

Unlike the other two drought metrics, drought duration is primarily driven by nat-767

ural variability, even when the metric is derived across the longest window. Drought du-768

ration generally is linked to the length of time in which there is no precipitation. None769

of the imposed climate changes directly affects this behavior in the same manner that770

precipitation scaling directly influences drought intensity or temperature trends affect771

drought occurrence. Temperature increases can somewhat extend drought duration by772

increasing evapotranspiration at the beginning and end of a drought period (Figure 12h),773

but ultimately the duration of a drought is dictated by the occurrence of large storms774

that end the drought, which is primarily driven by natural variability in our climate sce-775

narios. The decomposition results for the remaining four gauged locations are presented776

in Figure S17-S20. These gauged locations show similar behavior as the Don Pedro gauge.777

Temperature trends play a large role in influencing drought occurrence, and this influ-778

ence is particularly large in Merced and New Melones Lake (S17a, S20a). Precipitation779

scaling plays a small role in drought occurrence, and drought duration is primarily driven780

by natural variability.781

The drivers of drought are more complex than the flood hazard metrics due to the782

heterogeneity of behavior across the drought metrics. A comparison between Figures 12a,d,783

and g demonstrate vast differences in drivers (and therefore approaches for managing784

drought) depending on exactly what characteristic of drought is prioritized in planning.785

The choice of time horizon further complicates the understanding of the appropriate plan-786

ning process, especially in the case of drought occurrence (Figures 12a,b). However, drought787

intensity and drought duration show more stable influence primarily by natural variabil-788

ity and would consequently need a mix of carefully coordinated shorter-term adaptive789

actions (e.g., water transfers, conservation, and shifts in allocative priorities to higher790

value uses) that provide flexibility to improve the robustness of longer-term infrastruc-791
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ture investments to extreme variability in Central Valley drought regimes (e.g., improved792

conveyance, groundwater banking, managed aquifer recharge, and others; Herman et al.793

(2020); Hamilton et al. (2022)).794

3.4.3 Relative Variance Contributions for Joint Flood Hazard795
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Figure 13. A decomposition of the key drivers of variance in joint flood metrics for a),c)

Tuolumne and Millerton and b,d) Tuolumne, Millerton, and Merced.

Figure 13 shows the variance partitioning for the copula-based joint flood hazard796

metric in two cases: (1) bivariate flood risk in the Tuolumne and Millerton (Figure 13a,c);797

and (2) trivariate flood hazard in the Tuolumne, Millerton, and Merced (Figure 13b,d),798

both for the 100-year, 3-day flood. In both cases, the primary driver of joint flood haz-799

ard is natural variability. Unlike flood hazard for individual basins (see Figure 11), the800
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contributions of natural variability to the total variance joint flood hazard does not de-801

cline substantially with time horizon. Additionally, as more locations are considered when802

quantifying joint flood hazard, natural variability becomes an even more prominent driver803

of spatially compounding major flood hazards. These results suggest that the dominat-804

ing factor that dictates whether basins experience simultaneous large flooding is largely805

randomness in storm tracks and the associated spatial distribution of extreme precip-806

itation and temperature-driven snowmelt. The thermodynamic climate changes that in-807

fluence snowmelt or scale up storms do play a role, particularly if the basins are in close808

proximity (such as the Tuolumne and Millerton in Figures 13a,c). However, as more basins809

are included, natural variability in the weather during large storms dominates. Figure810

13 reveals the inherent challenges of managing for spatially compounding flood hazards811

in this region. If persistent climate changes are a more dominant factor in driving joint812

flooding across all basins, then shared investments in canal expansion or rehabilitation813

across the regions could be used to offset some of this risk. However, since natural vari-814

ability is the key driver of large flooding, alternative methods of creating unified plan-815

ning and management strategies again need to be considered, using a mix of carefully816

coordinated shorter-term adaptive actions that provide flexibility to improve the robust-817

ness of longer-term infrastructure investments to the extreme hydro-climatic variabil-818

ity of the Central Valley (Herman et al., 2020; Hamilton et al., 2022).819

4 Conclusion820

This study contributes a novel framework to better understand the relative role of821

natural climate variability and climate change in determining the uncertainty in future822

hydrologic extremes of great importance to water systems planning and management.823

This framework is complementary to similar approaches based on GCM ensembles, but824

instead utilizes a large stochastic ensemble of paleo-based weather and hydrologic sim-825

ulations to capture the plausible range of natural variability in drought and flood dy-826

namics. The impacts of pre-selected mechanisms of climate change, including shifts in827

temperature and precipitation scaling, are then incorporated into the ensemble. The vari-828

ance in hydrologic extremes is then partitioned across those climate changes and nat-829

ural variability in the ensemble.830

We first demonstrate the utility of the generator forced with paleodata in captur-831

ing and expanding on the dynamics of the modern record, which makes it a particularly832
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useful for facilitating exploratory modeling and further quantification of the robustness833

of water resources systems to challenging scenarios that have been seen in the region’s834

past hydroclimate. We also highlight the large non-stationarity that exists in the flood835

and drought metrics through the length of the reconstruction, particularly taking note836

of consequential 100-year flooding periods that can become as likely as 10-year events837

in parts of the record (i.e., 10 times more likely). These results have large implications838

for commonly employed stationary analyses, such as deriving design event estimates from839

the modern record, to quantify flood risk in this region. Our results suggest that these840

techniques severely underrepresent hydro-climatic hazards and the magnitude of design841

events that infrastructure should be built for.842

The results of the variance decomposition component of the study highlight the fol-843

lowing main conclusions:844

• Uncertainty in future flooding within individual basins is largely driven by ther-845

modynamic climate change, especially if evaluated over long time horizons. Flood-846

ing within snow-dominated basins is primarily driven by changes in temperature,847

while lower-elevation basins see a greater influence from precipitation scaling.848

• The relative importance of climate change and natural variability on the uncer-849

tainty in future drought depends on the drought metric of interest. Changes in850

temperature drive drought occurrence, while precipitation scaling plays a role in851

drought intensity. Drought duration is primarily driven by natural variability.852

• The uncertainty in simultaneous flood hazard across multiple basins is largely driven853

by natural variability, and this influence increases as additional basins are consid-854

ered.855

• The perception of the most important driver is highly influenced by the time hori-856

zon over which a metric is calculated. Shorter time horizons are less likely to cap-857

ture how climate change uncertainty influences the uncertainty in hydrologic ex-858

tremes.859

The variance decomposition reveals a complicated path to robust planning and manag-860

ing for both flood and drought in the region. The results suggest that natural variabil-861

ity and climate change influence both extremes to varying degrees. Furthermore, differ-862

ent characteristics of a single extreme (i.e. drought occurrence and duration) can be in-863

fluenced by different drivers.864
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Additionally, if different time horizons are prioritized for planning for extremes, the865

understanding of the most important drivers of flood and drought hazards also changes.866

This last facet especially presents a problem for adaptive planning and management. This867

type of planning triggers management decisions based on the evolution of an observed868

variable (including hydroclimatic variables like precipitation or streamflow) over a spe-869

cific horizon. As demonstrated in our study, tracking peak flows over a 30-year or 100-870

year horizon are both appropriate for longer-term flood management, but prioritizing871

the latter could neglect the effects of internal variability in the near term while increas-872

ing the potential for maladaptive longer-lived capital investments in infrastructure. Thus,873

it’s important for water resources agencies that utilize these dynamic planning methods874

to effectively balance the value and potential regret of near term investments (Herman875

et al., 2020; Schlumberger et al., 2022).876

One of the most important results of our study is that natural variability plays a877

very large role in dictating the future uncertainty in key metrics of flood and drought878

that form the basis of water resources planning; at times much larger than that of promi-879

nent climate change signals. This suggests that better quantification of the true range880

of natural variability in these extremes should be a major priority for the climate and881

hydrologic research community, and equally important, these efforts should directly in-882

form future planning efforts for water resources systems. However, historically, this has883

often not been the case, with concerns about climate change often overshadowing the884

potential impacts of natural variability (see discussions in Koutsoyiannis (2020, 2021)).885

Our results show, in particular, the importance of natural variability on spatially886

compounding flood hazard, which arguably poses a more difficult and complex manage-887

ment problem than addressing hazards in any one basin due to the need for infrastruc-888

ture coordination across space and time. This highlights the potential value that longer,889

paleo-based data could bring to the estimation of joint flood hazards. The field of pa-890

leoflood hydrology has historically focused on the identification and dating of flood ev-891

idence in fluvial sedimentary archives, but incorporating speleothems and botanical archives892

can substantially increase the comprehensiveness and quality of paleoflood data (Wilhelm893

et al., 2018). Alluvial archives are also being used in more densely-populated and flood-894

prone regions (Toonen et al., 2020), and recent studies have shown that incorporation895

of these data can significantly reduce the uncertainty of extreme flood estimates (Engeland896

et al., 2020; Reinders & Muñoz, 2021). Methodological advances that can use these new897
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and diverse data sources to constrain joint flood hazard estimates across sites would be898

particularly helpful, as would guidance on how to appropriately and consistently incor-899

porate paleodata into risk management practices that also consider the effects of climate900

change. The work of England Jr et al. (2019) that helped incorporate paleodata into U.S.901

flood frequency guidance (Bulletin 17C) provides inspiration for such an approach.902

The results also highlight the significant impact of natural variability on drought903

uncertainty, especially drought duration and intensity, and the implications stated above904

for joint flood hazards also extend to drought hazards. There are state-of-the-art tech-905

niques currently being applied within the dendrochronology community that can help906

improve our understanding of the natural range of drought variability. Beyond using tree907

ring widths, some studies are isolating earlywood and latewood signals for better drought908

reconstruction (Soulé et al., 2021; Song et al., 2022) or using blue intensity (the inten-909

sity of reflectance of the blue channel light from a wood core) to identify more stable climate-910

growth relationships that inform more robust reconstructions (Akhmetzyanov et al., 2023).911

Furthermore, better forecasts could provide water managers with more effective ways to912

navigate drought caused by natural variability. Skillful near-term drought predictions913

have been achieved by using decadal hindcasts from CMIP6 (Zhu et al., 2020) and Ma-914

chine learning based approaches, particularly those that can model catchment memory915

are being used to create skillful seasonal drought predictions (Amanambu et al., 2022;916

Sutanto & Van Lanen, 2022)917

One key limitation of this work is that we only consider a subset of plausible cli-918

mate change scenarios that are not comprehensive, but rather reflect two mechanisms919

of change that are likely to occur and to be consequential to the San Joaquin Valley in920

California. This limitation includes the omission of the possibility that properties of long-921

term climate variability will itself change in the future under climate change. Another922

limitation is that we represent natural variability with one statistical model based on his-923

torical and paleo data. As others have shown (Koutsoyiannis, 2021), the quantification924

of natural variability often greatly depends on the statistical model used.925

While outside the scope of this study, the framework presented and conclusions drawn926

here would benefit from a direct comparison against a similar approach using a climate927

ensemble drawn from a GCM, especially a single model initial-condition large ensemble928

(SMILE; see Lehner et al. (2020)). In a SMILEs-based framework, projections of pre-929
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cipitation and temperature derived from a single GCM under multiple initial conditions930

and multiple emission scenarios could be downscaled and propagated through hydrologic931

models to create a future streamflow ensemble, which could be used for partitioning vari-932

ance in hydrologic extremes across emission scenarios and natural variability. By com-933

paring results between the framework of this study and a SMILEs-based framework, one934

could better understand whether and how the relative roles of natural variability and935

climate change are consistent or depend on methodological choice.936

Regardless of method used, the results of this work strongly suggest that large en-937

sembles of natural variability are likely needed to adequately assess future risks to wa-938

ter resources systems that are particularly sensitive to extreme events. In future work,939

we intend to pair the hydrologic ensembles developed here with a regional, multi-sector940

model of California’s Central Valley (Zeff et al., 2021) to more fully assess the risk that941

future hydroclimate extremes pose to stakeholders across the system, including ground-942

water banks and irrigation districts. The ultimate goal of such work is to facilitate a greater943

understanding of how future extremes lead to heterogeneous shortage and flooding im-944

pacts across stakeholders, and to help identify robust adaptation strategies to address945

these future risks.946
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Appendix A: Glossary of Terms1249

• Baseline weather scenario: The 600-year daily precipitation and temperature1250

scenario that is created by forcing the weather generator with paleo-reconstructed1251

weather regimes. This scenario is comprised of 50 stochastic ensemble members.1252

• Baseline streamflow scenario: The 600-year daily streamflow scenario acquired1253

by driving the hydrologic model with paleo-reconstructed weather (often referred1254

to as 0T, 0CC). This scenario is comprised of 50 stochastic ensemble members.1255

• Climate scenario: A 600-year daily streamflow scenario created by forcing the1256

hydrologic model with a baseline weather scenario that is layered with a set of ther-1257

modynamic climate changes.1258

• Ensemble member: Also referred to as a stochastic realization; each climate sce-1259

nario is comprised of 50 stochastic ensemble members1260

• Record length: The total length of the dataset1261

– Paleo-informed weather and streamflow datasets: 617 years (1400-20171262

CE) at a daily time scale1263

– Observed Livneh climate (temperature and precipitation) dataset: 631264

years (1950-2013 CE) at a daily time scale1265

– Observed CDEC streamflow dataset: 33 years (1986-2019) at a daily time1266

scale1267

• Time horizon: also referred to as moving window; the length (in years) of the1268

sliding window that passes over the total record length.1269
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Appendix B: Metrics and Time Horizons1270

Metric Description Calculated Justification Citation

Flood Metric 10-Year Return

Period Flow

GEV fit to 3-day

maximum flow

Captures risk to

smaller flood-

plains (or nui-

sance flooding

in larger areas)

and drives smaller

investments.

Progress on

Incorporating

Climate Change

into Planning

and Management

of California’s

Water Resources

(July 2006)

Flood Metric 100-Year Return

Period Flow

GEV fit to 3-day

maximum flow

Drives larger

riverine infras-

tructure develop-

ment and flood

risk manage-

ment. Requires

FEMA-mandated

insurance.

Central Valley

Flood Protection

Plan Update 2022

(November 2022)

Drought Metrics Occurrence,

Severity, and

Duration

Standardized

streamflow-based

indices

No state-wide

definition. Histor-

ical droughts have

been identified

based on a combi-

nation of metrics

such as reservoir

depth and deficit

magnitude and

duration.

California’s

Most Significant

Droughts: Com-

paring historical

and recent condi-

tions (February

2015)
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Spatially Com-

pounding Flood

Metric

Likelihood of

simultaneously

exceeding his-

torical 10-year

and 100-year flow

events in n basins

n-dimensional

Gaussian copula

Flooding across

the San Joaquin

system could

result in infras-

tructure failure

such as levee

breaks and dis-

rupt deliveries of

fresh water to 3

million acres of

farmland.

Managing Floods

in California

(March 2017);

Zscheischler et al.

(2020)

Time Horizon 30-Year N/A CA prioritizes in-

vestment in flood

management

over a 30-year

planning horizon

Central Valley

Flood Protection

Plan Update 2022

(November 2022)

Time Horizon 100-Year N/A Not actively used

in planning and

management,

but can repre-

sent longer-term

investments.

N/A
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Supporting Information for

“Understanding Contributions of Paleo-Informed Natural Vari-

ability and Climate Changes on Hydroclimate Extremes in the Cen-

tral Valley Region of California”

Rohini S. Gupta1, Scott Steinschneider2, Patrick M. Reed1

1School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA

2Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
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2. Text S1

3. Figures S1-S22, Text S2

Tables

Basin Area (acre-ft) Elevation (ft) Slope

Tuolumne 3983 1795 12.6409

Millerton 4338 2156 13.0847

Merced 2784 1647 13.4917

New Hogan Lake 940 639 9.0975

New Melones 2331 1735 12.4246

Table S1. Physical attributes of the five basins as summarized in Wi and Steinschneider

(2022).

Corresponding author: R.S. Gupta, rg727@cornell.edu

–1–



manuscript submitted to Earth’s Future

Text S1: Fitting the Paleo-Conditioned Non-Homogeneous Hidden Markov
Model

We fit a Non-Homogeneous Hidden Markov Model (NHMM) in order to generate

ensembles of plausible daily traces of weather regimes through the 600-year reconstruc-

tion. As compared to a Hidden Markov Model which has a stationary transition prob-

ability matrix, the NHMM has dynamic transition probability matrices that are condi-

tioned on one or more external covariates that influence transitions between states. In

this case, the covariates are the products of the reconstruction which are the first four

principal components of weather regime occurrence. More information on the principal

components can be found in Gupta et al. (2022). The NHMM is first fit over the instru-

mental period to the first nine principal components of daily, 500 hPa geopotential height

from NOAA-CIRES-DOE Twentieth Century Reanalysis (V3) dataset (Slivinski et al.,

2019) between 180-100°W and 30-60°N (i.e., the Pacific/North American sector) from

1950-2017 using the depmixS4 package in R. It is conditioned with the four reconstructed

principal components (PCWR from the Gupta et al. (2022) reconstruction) that over-

lap the same time period. The result from this fitting a time-varying transition prob-

ability matrix shown in Equation 1:

P (WRt = i|WRt = j,Xt = x) =
exp(β0j,i + β′

j,i)∑K
k=1 exp(β0j,i + β′

j,i)
(1)

Here, the transition probability from WR i to WR j at time t is conditioned on X ′
t =

[PCWR1,t
, PCWR2,t

, PCWR3,t
, PCWR4,t

] a vector of daily covariates developed by repeat-

ing the annual values of each for each day of the year. These covariates (Level 1 in Fig-

ure 3) are used within a multinomial logistic regression with intercepts β0j,i and coef-

ficients βj,i to define the transition probabilities, with a prime denoting the vector trans-

pose.
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Table S2. NHMM Transition Matrix

WR 1 WR 2 WR 3 WR 4 WR 5

WR 1 P (1|1) =

β0,1|1 +∑4
k=1 βk,1|1∗

PCWRk

P (1|2) =

β0,1|2 +∑4
k=1 βk,1|2∗

PCWRk

P (1|3) =

β0,1|3 +∑4
k=1 βk,1|3∗

PCWRk

P (1|4) =

β0,1|4 +∑4
k=1 βk,1|4∗

PCWRk

P (1|5) =

β0,1|5 +∑4
k=1 βk,1|5∗

PCWRk

WR 2 P (2|1) =

β0,2|1 +∑4
k=1 βk,2|1∗

PCWRk

P (2|2) =

β0,2|2 +∑4
k=1 βk,2|2∗

PCWRk

P (2|3) =

β0,2|3 +∑4
k=1 βk,2|3∗

PCWRk

P (2|4) =

β0,2|4 +∑4
k=1 βk,2|4∗

PCWRk

P (2|5) =

β0,2|5 +∑4
k=1 βk,2|5∗

PCWRk

WR 3 P (3|1) =

β0,2|1 +∑4
k=1 βk,3|1∗

PCWRk

P (3|2) =

β0,3|2 +∑4
k=1 βk,3|2∗

PCWRk

P (3|3) =

β0,3|3 +∑4
k=1 βk,3|3∗

PCWRk

P (3|4) =

β0,3|4 +∑4
k=1 βk,3|4∗

PCWRk

P (3|5) =

β0,3|5 +∑4
k=1 βk,3|5∗

PCWRk

WR 4 P (4|1) =

β0,4|1 +∑4
k=1 βk,4|1∗

PCWRk

P (4|2) =

β0,4|2 +∑4
k=1 βk,4|2∗

PCWRk

P (4|3) =

β0,4|3 +∑4
k=1 βk,4|3∗

PCWRk

P (4|4) =

β0,4|4 +∑4
k=1 βk,4|4∗

PCWRk

P (4|5) =

β0,4|5 +∑4
k=1 βk,4|5∗

PCWRk

WR 4 P (5|1) =

β0,5|1 +∑4
k=1 βk,5|1∗

PCWRk

P (5|2) =

β0,5|2 +∑4
k=1 βk,5|2∗

PCWRk

P (5|3) =

β0,5|3 +∑4
k=1 βk,5|3∗

PCWRk

P (5|4) =

β0,5|4 +∑4
k=1 βk,5|4∗

PCWRk

P (5|5) =

β0,5|5 +∑4
k=1 βk,5|5∗

PCWRk

Table S2 shows this symbolic transition matrix. The coefficients of the regression

are fit during the instrumental period, and the matrix can vary depending on the value

of the daily PCWR from the reconstruction. Thus, a different transition matrix can be

developed for each day. From this sequence of daily transition matrices, plausible sequences

of daily WRs can be simulated across the entire 600-year period.
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Figures

100 realizations
50 realizations
25 realizations

Figure S1. Flow duration curves of 3-day peak flow corresponding to different ensemble

sizes. Each line corresponds to 30-year chunks of the 600-year record.

–4–



manuscript submitted to Earth’s Future

M
ax

im
um

 Te
m

pe
ra

tu
re

 C
ha

ng
e 

(0
C)

CMIP6 Model

Figure S2. Maximum temperature change dictated by the subset of CMIP6 models

downscaled by CarbonPlan (Chegwidden et al., 2022) and for the length of the projection

from 2015-2050. All models are run under one initial condition and under multiple down-

scaling methods.
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Figure S3. Observed vs. simulated characteristics of daily precipitation in the Tuolumne

Basin. For at-site characteristics (180 grid cells), the 95% range for simulated statistics

across the 50 ensemble members is shown with whiskers. For basin-averaged statistics, the

distribution of simulated statistics is shown as a boxplot along with the observed value.
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Figure S4. Same as Figure S3 but for observed vs. simulated characteristics of minimum

daily temperature in the Tuolumne Basin.
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Figure S5. Same as Figure S3 but for observed vs. simulated characteristics of maximum

daily temperature in the Tuolumne Basin.
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Figure S6. Same as Figure S3 but for observed vs. simulated characteristics of flooding

return levels.
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Figure S7. Same as Figure S1 but for observed vs. simulated characteristics of accumu-

lated minimum precipitation totals across varying time periods.
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Text S2: Distinctions Across Hydrologic Models

Streamflow ensembles are developed using two hydrologic models: SAC-SMA and

HYMOD. Figure S8 shows exceedance plots of 3-day flows associated with each model

with a focus on the Don Pedro gauge in the Tuolumne Basin. The flow duration curves

exhibit strong differences. The models capture similar peak flow dynamics, but have strong

lower-tail distinctions. Particularly, SAC-SMA is capable of producing drier three-day

flows. We further conduct a small variance decomposition experiment using SAC-SMA

and HYMOD in the Tuolumne Basin. Figures S21 and S22 show the results of the de-

composition when choice of hydrologic model is an additional uncertain factor for the

flood and drought metrics respectively. Overall, we demonstrate that the choice of model

does not impact key drivers of the metrics of interest. Wi and Steinschneider (2022) also

demonstrate better out-of-sample performance of SAC-SMA in all five basins over the

observed record. Due to these reasons, we opt to continue the study with a single model

and choose SAC-SMA.

b)

HYMOD SAC-SMA

a)

Figure S8. Non-exceedance plots of 3-day flow volumes associated with each model for

the Tuolumne Basin. Each grey line represents sorted volumes for each year in 30-year

chunks of the paleo-reconstruction across all 50 ensemble members. The red line corre-

sponds to sorted volumes for the 30-year modern record as derived from forcing SAC-

SMA-with historic Livneh data from 1987-2013.
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Figure S9. 7-day and 3-day flow volumes at gauged locations across the five basins

derived from the paleo-informed streamflow ensembles compared to the Livneh-forced

generator over the modern period. Key events from the observed record are shown as col-

ored lines. Each grey line represents sorted volumes for each year in 30-year chunks of the

paleo-reconstruction across all 50 ensemble members.
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Figure S10. Three-day annual maxima associated with the 10-year return period event

and 100-year return period event for remaining four gauged locations. calculated in 30-

year moving windows and across the time period from 1400-2017. The dark green line

represents the mean flooding return levels and the shading represents the 5th and 95th

percentile bounds.
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Figure S11. SSI-based hydrologic drought metrics for the remaining four locations cal-

culated in 30-year moving windows and across the time period from 1400-2017. The dark

tan line represents the mean drought metric value and the shading represents the 5th and

95th percentile bounds.
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Figure S12. The effect of increasing a,c) temperature and b,d) precipitation scaling rates

on drought severity a,b) and drought duration c,d) at Don Pedro (Tuolumne Basin). The

dark brown lines represent the increase in the percentage of the 30-year window classified

in drought conditions with respect to the baseline scenario (gray dashed line at 0) and the

shading represents the 5th and 95th percentile bounds.. A modern baseline (black line)

is included as reference and represents the distance from the modern metric to the worst

drought duration or severity recorded in the reconstruction.
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Figure S13. A decomposition of the key drivers of variance in the flood metrics for the

Merced Falls gauge in the Merced River Basin for an a,d) 30-year window b,e) 100-year

window and c,f) a 600-year window.
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Figure S14. A decomposition of the key drivers of variance in the flood metrics for the

Millerton Lake gauge in the San Joaquin Basin for an a,d) 30-year window b,e) 100-year

window and c,f) a 600-year window.
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Figure S15. A decomposition of the key drivers of variance in the flood metrics for the

New Hogan Lake gauge in the Calaveras River Basin for an a,d) 30-year window b,e) 100-

year window and c,f) a 600-year window.
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Figure S16. A decomposition of the key drivers of variance in the flood metrics for the

New Melones Lake gauge in the Stanislaus River Basin for an a,d) 30-year window b,e)

100-year window and c,f) a 600-year window.
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Figure S17. A decomposition of the key drivers of variance in the drought metrics for

the Merced Falls gauge in the Merced River Basin for an a,d) 30-year window b,e) 100-

year window and c,f) a 600-year window.
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Figure S18. A decomposition of the key drivers of variance in the drought metrics for

the Millerton Lake gauge in the San Joaquin Basin for an a,d) 30-year window b,e) 100-

year window and c,f) a 600-year window.
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Figure S19. A decomposition of the key drivers of variance in the drought metrics for

the New Hogan Lake gauge in the Calaveras River Basin for a,d,g) 30-year window b,e,h)

100-year window and c,f,i) a 600-year window.
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Figure S20. A decomposition of the key drivers of variance in the drought metrics for

the New Melones Lake gauge in the Stanislaus River Basin for a,d,g) 30-year window

b,e,h) 100-year window and c,f,i) a 600-year window
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Figure S21. A decomposition of the key drivers of variance in flood metrics for the

Tuolumne Basin, with the additional factor of hydrologic model choice.
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Figure S22. A decomposition of the key drivers of variance in drought metrics for the

Tuolumne Basin, with the additional factor of hydrologic model choice.

–25–



manuscript submitted to Earth’s Future

References

Chegwidden, O. S., Hagen, R., Martin, K., Jones, M., Banihirwe, A., Chiao, C.,

. . . Hamman, J. (2022, October). Downscaling CMIP6 with multiple sta-

tistical methods. Zenodo. Retrieved from https://doi.org/10.5281/

zenodo.7145491 (The development of this project was funded, in part,

through a grant from the Microsoft AI for Earth program to CarbonPlan.) doi:

10.5281/zenodo.7145491

Gupta, R. S., Steinschneider, S., & Reed, P. M. (2022). A multi-objective paleo-

informed reconstruction of western us weather regimes over the past 600 years.

Climate Dynamics, 1–20.

Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese, B. S.,

McColl, C., . . . others (2019). Towards a more reliable historical reanaly-

sis: Improvements for version 3 of the twentieth century reanalysis system.

Quarterly Journal of the Royal Meteorological Society , 145 (724), 2876–2908.

Wi, S., & Steinschneider, S. (2022). Assessing the physical realism of deep learning

hydrologic model projections under climate change. Water Resources Research,

58 (9), e2022WR032123.

–26–


