Raphael Savelli

and 10 more

While the preindustrial ocean was assumed to be in equilibrium with the atmosphere, the modern ocean is a carbon sink, resulting from natural variability and anthropogenic perturbations, such as fossil fuel emissions and changes in riverine exports over the past two centuries. Here we use a suite of sensitivity experiments based on the ECCO-Darwin global-ocean biogeochemistry model to evaluate the response of air-sea CO2 flux and carbon cycling to present-day lateral fluxes of carbon, nitrogen, and silica. We generate a daily export product by combining point-source freshwater discharge from JRA55-do with the Global NEWS 2 watershed model, accounting for lateral fluxes from 5171 watersheds worldwide. From 2000 to 2019, carbon exports increase CO2 outgassing by 0.22 Pg C yr-1 via the solubility pump, while nitrogen exports increase the ocean sink by 0.17 Pg C yr-1 due to phytoplankton fertilization. On regional scales, exports to the Tropical Atlantic and Arctic Ocean are dominated by organic carbon, which originates from terrestrial vegetation and peats and increases CO2 outgassing (+10 and +20%, respectively). In contrast, Southeast Asia is dominated by nitrogen from anthropogenic sources, such as agriculture and pollution, leading to increased CO2 uptake (+7%). Our results demonstrate that the magnitude and composition of riverine exports, which are determined in part from upstream watersheds and anthropogenic perturbations, substantially impact present-day regional-to-global-ocean carbon cycling. Ultimately, this work stresses that lateral fluxes must be included in ocean biogeochemistry and Earth System Models to better constrain the transport of carbon, nutrients, and metals across the land-ocean-aquatic-continuum.

Kevin Archibald

and 3 more

Rising ocean temperatures affect marine microbial ecosystems directly, since metabolic rates (e.g. photosynthesis, respiration) are temperature-dependent, but temperature also has indirect effects mediated through changes to the physical environment. Empirical observations of the long-term trends in biomass and productivity measure the integrated response of these two kinds of effects, making the independent components difficult to disentangle. We used a combination of modeling approaches to isolate the direct effects of rising temperatures on microbial metabolism and explored the consequences for food web dynamics and global biogeochemistry. We evaluated the effects of temperature sensitivity in two cases: first, that all metabolic processes have the same temperature sensitivity, and alternatively, that heterotrophic processes have higher temperature sensitivity than autotrophic processes. No other study has explored the direct effects of temperature on ecosystem provisioning (primary productivity, biomass, export) independently of the associated changes to the physical environment that result from warming. Microbial ecosystems at higher temperatures are characterized by increased productivity, but decreased biomass stocks as a result of transient, high export events that remove biomass from the surface ocean. Trophic dynamics also mediate changes to community size structure, resulting in longer food chains and increased mean body size at higher temperatures. These ecosystem thermal responses are magnified when the temperature sensitivity of heterotrophs is higher than that of autotrophs. These results provide important context for understanding the combined food web response to direct and indirect temperature effects and inform the construction and interpretation of Earth systems models used in climate projections.