Zijin Zhang

and 16 more

We investigate the dynamics of relativistic electrons in the Earth’s outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave-driven acceleration of ~100-300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on April 17, 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC- and chorus wave-driven electron precipitation in the outer radiation belt, trapped 0.1-1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi-linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100-300 keV electrons by plasma sheet injections together with chorus wave-driven acceleration can overcome the rate of chorus and EMIC wave-driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave-particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes.

Keisuke Hosokawa

and 25 more

A specialized ground-based system has been developed for simultaneous observations of pulsating aurora (PsA) and related magnetospheric phenomena with the Arase satellite. The instrument suite is composed of 1) six 100-Hz sampling high-speed all-sky imagers (ASIs), 2) two 10-Hz sampling monochromatic ASIs observing 427.8 and 844.6 nm auroral emissions, 3) Watec Monochromatic Imagers, 4) a 20-Hz sampling magnetometer and 5) a 5-wavelength photometer. The 100-Hz ASIs were deployed in four stations in Scandinavia and two stations in Alaska, which have been used for capturing the main pulsations and quasi 3 Hz internal modulations of PsA at the same time. The 10-Hz sampling monochromatic ASIs have been operative in Tromsø, Norway with the 20-Hz magnetometer and the 5-wavelength photometer. Combination of these multiple instruments with the European Incoherent SCATter (EISCAT) radar enables us to reveal the energetics/electrodynamics behind PsA and further to detect the low-altitude ionization due to energetic electron precipitation during PsA. In particular, we intend to derive the characteristic energy of precipitating electrons during PsA by comparing the 427.8 and 844.6 nm emissions from the two monochromatic ASIs. Since the launch of the Arase satellite, the data from these instruments have been examined in comparison with the wave and particle data from the satellite in the magnetosphere. In the future, the system will be utilized not only for studies of PsA but also for other categories of aurora in close collaboration with the planned EISCAT_3D project.