The carbon (C) dynamics of boreal coniferous swamps are a largely understudied component of wetland carbon cycling. We investigated the above- and below-ground carbon stocks and growing season carbon dioxide (CO2) and methane (CH4) fluxes from a representative wooded coniferous swamp in northern Alberta, Canada in 2022. Tree inventories, understory vegetation biomass and peat cores were collected across three sub-sites within the broader swamp, with gas flux collars placed in the dominant plant communities present. Alongside the C flux measurements, environmental variables such as water table depth, soil temperature and growing season understory green leaf phenology were measured. Our results show that these wooded coniferous swamps store large volumes of organic C in their biomass and soil (134 kg C m-2), comparable with other wetland and forest types, although 95% of the total C stock at our site was within the soil organic carbon. We also found that understory CO2 and CH4 fluxes indicated that the ground layer of the site is a source of greenhouse gases (GHG) to the atmosphere across the growing season. However, we did not measure litterfall input, tree GHG fluxes or net primary productivity of the overstory, therefore we are not able to say whether the site is an overall source of C to the atmosphere. This study provides a much-needed insight into the C dynamics of these under-valued wetland ecosystems and we highlight the need for a coordinated effort across boreal regions to try to improve inventories of C stocks and fluxes.