Travis Aerenson

and 3 more

It is predicted by both theory and models that high-altitude clouds will occur higher in the atmosphere as a result of climate warming. This produces a positive longwave feedback and has a substantial impact on the Earth’s response to warming. This effect is well established by theory, but is poorly constrained by observations, and there is large spread in the feedback strength between climate models. We use the NASA Multi-angle Imaging SpectroRadiometer (MISR) to examine changes in Cloud-Top-Height (CTH). MISR uses a stereo-imaging technique to determine CTH. This approach is geometric in nature and insensitive to instrument calibration and therefore is well suited for trend analysis and studies of variability on long time scales. In this article we show that the current MISR record does have an increase in CTH for high-altitude cloud over Southern Hemisphere (SH) oceans but not over Tropical or the Northern Hemisphere (NH) oceans. We use climate model simulations to estimate when MISR might be expected to detect trends in CTH, that include the NH. The analysis suggests that according to the models used in this study MISR should detect changes over the SH ocean earlier than the NH, and if the model predictions are correct should be capable of detecting a trend over the Tropics and NH very soon (3 to 10 years). This result highlights the potential value of a follow-on mission to MISR, which no longer maintains a fixed equator crossing time and is unlikely to be making observations for another 10 years.

Timothy Andrews

and 19 more

We investigate the dependence of radiative feedback on the pattern of sea-surface temperature (SST) change in fourteen Atmospheric General Circulation Models (AGCMs) forced with observed variations in SST and sea-ice over the historical record from 1871 to near-present. We find that over 1871-1980, the Earth warmed with feedbacks largely consistent and strongly correlated with long-term climate sensitivity feedbacks (diagnosed from corresponding atmosphere-ocean GCM abrupt-4xCO2 simulations). Post 1980 however, the Earth warmed with unusual trends in tropical Pacific SSTs (enhanced warming in the west, cooling in the east) that drove climate feedback to be uncorrelated with – and indicating much lower climate sensitivity than – that expected for long-term CO2 increase. We show that these conclusions are not strongly dependent on the AMIP II SST dataset used to force the AGCMs, though the magnitude of feedback post 1980 is generally smaller in eight AGCMs forced with alternative HadISST1 SST boundary conditions. We quantify a ‘pattern effect’ (defined as the difference between historical and long-term CO2 feedback) equal to 0.44 ± 0.47 [5-95%] W m-2 K-1 for the time-period 1871-2010, which increases by 0.05 ± 0.04 W m-2 K-1 if calculated over 1871-2014. Assessed changes in the Earth’s historical energy budget are in agreement with the AGCM feedback estimates. Furthermore satellite observations of changes in top-of-atmosphere radiative fluxes since 1985 suggest that the pattern effect was particularly strong over recent decades, though this may be waning post 2014 due to a warming of the eastern Pacific.

Julio T. Bacmeister

and 11 more

We examine the response of the Community Earth System Model versions 1 and 2 (CESM1 and CESM2) to abrupt quadrupling of atmospheric CO$_2$ concentrations (4xCO2) and to 1% annually increasing CO2 concentrations (1%CO2). Different estimates of equilibrium climate sensitivity (ECS) for CESM1 and CESM2 are presented. All estimates show that the sensitivity of CESM2 has increased by 1.5K or more over that of CESM1. At the same time the transient climate response (TCR) of CESM1 and CESM2 derived from 1%CO2 experiments has not changed significantly - 2.1K in CESM1 and 2.0K in CESM2. Increased initial forcing as well as stronger shortwave radiation feedbacks are responsible for the increase in ECS seen in CESM2. A decomposition of regional radiation feedbacks and their contribution to global feedbacks shows that the Southern Ocean plays a key role in the overall behavior of 4xCO2 experiments, accounting for about 50% of the total shortwave feedback in both CESM1 and CESM2. The Southern Ocean is also responsible for around half of the increase in shortwave feedback between CESM1 and CESM2, with a comparable contribution arising over tropical ocean. Experiments using a thermodynamic slab-ocean model (SOM) yield estimates of ECS that are in remarkable agreement with those from fully-coupled earth system model (ESM) experiments for the same level of CO2 increase. Finally, we show that the similarity of TCR in CESM1 and CESM2 masks significant regional differences in warming that occur in the 1%CO2 experiments for each model.