Motoharu Nowada

and 4 more

Local vortex-structured auroral spiral and a large-scale transpolar arc (TPA) were contemporaneously observed by the Polar ultraviolet imager (UVI), when a substorm almost recovered. The TPA grew along the dawnside auroral oval from the nightside to the dayside (oval-aligned TPA), and a chain of multiple auroral spots and spiral were located azimuthally near the poleward edge of the nightside auroral oval. Contemporaneous appearances of the TPA and the auroral spiral can be seen after the spiral appeared alone. Polar also detected the oval-aligned TPA and another dawnside TPA with the nightside end distorted toward the premidnight sector (J-shaped TPA) before and after the spiral’s formation, respectively. To examine these associated magnetotail structures, we performed global magnetohydrodynamic (MHD) simulations, based on two different types of code, BAT-S-RUS and improved REPPU, and examined how the field-aligned current (FAC) profiles varied in association with changes of the auroral form to TPA and/or auroral spiral. Global MHD simulations with the two different types of code can reproduce the TPAs and the associated FAC structures in the magnetotail. The auroral spiral and its nightside FAC profile, however, were not formed in both simulations, suggesting that its formation process cannot be treated within an MHD framework but is closely related to some kinetic process. When the J-shaped TPA and the auroral spiral contemporaneously appeared, the two MHD simulations could not reproduce the TPA, spiral and their associated magnetotail FAC structures, also advocating that a kinetic effect related to the spiral formation might prevent the TPA occurrence.

Jinyan Zhao

and 14 more

Magnetic reconnection, an essential mechanism in plasma physics that changes magnetic topology and energizes charged particles, plays a vital role in the dynamic processes of the Jovian magnetosphere. The traditional Vasyliūnas cycle only considers the effect of magnetic reconnection at the nightside magnetodisk. Recently, magnetic reconnection has been identified at the dayside magnetodisk in Saturn's magnetosphere and can impact dayside auroral processes. In this study, we provide the first evidence that the dayside magnetodisk reconnection can also occur at Jupiter. Using data from the Galileo and Voyager 2 spacecraft, we have identified 18 dayside reconnection events with radial distances in the range of 30–60 Jupiter radii (RJ). We analyzed the particle (electron and ion) flux, energy spectra, and characteristic energy of these dayside events and compared them to the nightside events. The statistical results show that the energy spectra and characteristic energy of electrons/ions in dayside and nightside magnetic reconnection events are comparable. On average, the characteristic energy of ions on the dayside is higher than that on the nightside. Based on the limited data set, we speculate that the occurrence rate of dayside magnetodisk reconnection should be significant. The dayside Jovian magnetodisk reconnection seems to have a comparable effect on providing energetic particles as that at nightside and to be one of the key processes driving dynamics within the Jovian magnetosphere.

Motoharu Nowada

and 4 more

The ultraviolet imager (UVI) of the Polar spacecraft and an all-sky camera at Longyearbyen contemporaneously detected an auroral vortex structure (so-called “auroral spiral”) on 10 January 1997. From space, the auroral spiral was observed as a “small spot” (one of an azimuthally-aligned chain of similar spots) in the poleward region of the main auroral oval from 18 h to 24 h magnetic local time. These auroral spots were formed while the substorm-associated auroral bulge was subsiding and several poleward-elongated auroral streak-like structures appeared during the late substorm recovery phase. During the spiral interval, the geomagnetically north-south and east-west components of the geomagnetic field, which were observed at several ground magnetic stations around Svalbard island, showed significant negative and positive bays caused by the field-aligned currents related with the aurora spiral appearance. The negative bays were reflected in the variations of local geomagnetic activity index (SML) which was provided from the SuperMAG magnetometer network at high latitudes. To pursue the spiral source region in the magnetotail, we trace each UVI image along field lines to the magnetic equatorial plane of the nightside magnetosphere using an empirical magnetic field model. Interestingly, the magnetotail region corresponding to the auroral spiral covered a broad region from Xgsm ~ -40 to -70 RE at Ygsm ~ 8 to 12 RE. The appearance of this auroral spiral suggests that extensive areas of the magnetotail (but local regions in the ionosphere) remain active even when the substorm almost ceases, and geomagnetic conditions are almost stable.

Hiroshi Hasegawa

and 21 more

We present observations in Earth’s magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard collisionless reconnection, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.