Larry Ger B Aragon

and 6 more

Large satellite discrepancies and model biases in representing precipitation over the Southern Ocean (SO) are related directly to the region’s limited surface observations of precipitation. To help address this knowledge gap, the study investigated the precipitation characteristics and rain rate retrievals over the remote SO using ship-borne data of the Ocean Rainfall And Ice-phase precipitation measurement Network disdrometer (OceanRAIN) and dual-polarimetric C-band radar (OceanPOL) aboard the Research Vessel (RV) Investigator in the Austral warm seasons of 2016 to 2018. Seven distinct synoptic types over the SO were analyzed based on their radar polarimetric signatures, surface precipitation phase, and rain microphysical properties. OceanRAIN observations revealed that the SO precipitation was dominated by drizzle and light rain, with small-sized raindrops (diameter < 1 mm) constituting up to 47 % of total accumulation. Precipitation occurred most frequently over the warm sector of extratropical cyclones, while concentrations of large-sized raindrops (diameter > 3 mm) were prominent over synoptic types with colder and more convectively unstable environments. OceanPOL observations complement and extend the surface precipitation properties sampled by OceanRAIN, providing unique information to help characterize the variety of potential precipitation types and associated mechanisms under different synoptic conditions. Raindrop size distributions (DSD) measured with OceanRAIN over the SO were better characterized by analytical DSD forms with two-shape parameters than single-shape parameters currently implemented in satellite retrieval algorithms. This study also revised a rainfall retrieval algorithm for C-band radars to reflect the large amount of small drops and provide improved radar rainfall estimates over the SO.

Bjorn Stevens

and 291 more

The science guiding the \EURECA campaign and its measurements are presented. \EURECA comprised roughly five weeks of measurements in the downstream winter trades of the North Atlantic — eastward and south-eastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, \EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or, or the life-cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso (200 km) and larger (500 km) scales, roughly four hundred hours of flight time by four heavily instrumented research aircraft, four global-ocean class research vessels, an advanced ground-based cloud observatory, a flotilla of autonomous or tethered measurement devices operating in the upper ocean (nearly 10000 profiles), lower atmosphere (continuous profiling), and along the air-sea interface, a network of water stable isotopologue measurements, complemented by special programmes of satellite remote sensing and modeling with a new generation of weather/climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that \EURECA explored — from Brazil Ring Current Eddies to turbulence induced clustering of cloud droplets and its influence on warm-rain formation — are presented along with an overview \EURECA’s outreach activities, environmental impact, and guidelines for scientific practice.