Kiran Alapaty

and 5 more

Different functions are used to account for turbulence in the atmospheric boundary layer for different stability regimes. These functions are one of the sources for differences among different atmospheric models’ predictions and associated biases. Also, turbulence is underrepresented in some of the resistance formulations. To address these issues with dry deposition, firstly we take advantage of three-dimensional (3-D) aspects of turbulence in estimating resistances by proposing and validating a 3-D turbulence velocity scale that is relevant for different stability regimes of boundary layer. Secondly, we hypothesize and prove that 3-D sonic anemometer measured friction velocity, used in 0-D and 1-D models, can be effectively replaced by the new turbulence velocity scale multiplied by the von Karman constant. Finally, we (1) evaluate a set of resistance formulations for ozone (O3), based on the 3-D turbulence velocity scale; and (2) intercompare estimations of such resistances with those obtained using the existing formulations and also evaluate simulated O3 fluxes using a single-point dry deposition model against long-term observations of O3 fluxes at the Harvard Forest site. Results indicate that the new resistance formulations work very well in simulating surface latent heat and O3 fluxes when compared to respective existing formulations as well as measurements at decadal time scale. Findings from this research may help to improve the capability of dry deposition schemes for better estimation of dry deposition fluxes and create opportunities for the development of a community dry deposition model for use in regional/global air quality models.

Patrick Campbell

and 4 more

Parameterization of subgrid-scale variability of land cover characterization (LCC) is an active area of research, and can improve model performance compared to the dominant (i.e., most abundant tile) approach. The “Noah” land surface model implementation in the global Model for Predictions Across Scales-Atmosphere (MPAS-A), however, only uses the dominant LCC approach that leads to oversimplification in regions of highly heterogeneous LCC (e.g., urban/suburban settings). Thus, in this work we implement a subgrid tiled approach as an option in MPAS-A, version 6.0, and assess the impacts of tiled LCC on meteorological predictions for two gradually refining meshes (92-25 and 46-12 km) focused on the conterminous U.S for January and July 2016. Compared to the dominant approach, results show that using the tiled LCC leads to pronounced global changes in 2-m temperature (July global average change ~ -0.4 K), 2-m moisture, and 10-m wind speed for the 92-25 km mesh. The tiled LCC reduces mean biases in 2-m temperature (July U.S. average bias reduction ~ factor of 4) and specific humidity in the central and western U.S. for the 92-25 km mesh, improves the agreement of vertical profiles (e.g., temperature, humidity, and wind speed) with observed radiosondes, and there is a general decrease in error for precipitation in the U.S.; however, there is increased bias and error for incoming solar radiation at the surface. The inclusion of subgrid LCC has implications for reducing systematic warm biases found in numerical weather prediction models.

Hansen Cao

and 28 more

We conduct the first 4D-Var inversion of NH3 accounting for NH3 bidirectional flux, using CrIS satellite NH3 observations over Europe in 2016. We find posterior NH3 emissions peak more in springtime than prior emissions at continental to national scales, and annually they are generally smaller than the prior emissions over central Europe, but larger over most of the rest of Europe. Annual posterior anthropogenic NH3 emissions for 25 European Union members (EU25) are 25% higher than the prior emissions and very close(<2% difference) to other inventories. Our posterior annual anthropogenic emissions for EU25, the UK, the Netherlands, and Switzerland are generally 10-20% smaller than when treating NH3 fluxes as uni-directional emissions, while the monthly regional difference can be up to 34% (Switzerland in July). Compared to monthly mean in-situ observations, our posterior NH3 emissions from both schemes generally improve the magnitude and seasonality of simulated surface NH3 and bulk NHx wet deposition throughout most of Europe, whereas evaluation against hourly measurements at a background site shows the bi-directional scheme better captures observed diurnal variability of surface NH3. This contrast highlights the need for accurately simulating diurnal variability of NH3 in assimilation of sun-synchronous observations and also the potential value of future geostationary satellite observations. Overall, our top-down ammonia emissions can help to examine the effectiveness of air pollution control policies to facilitate future air pollution management, as well as helping us understand the uncertainty in top-downNH3emission estimates associated with treatment of NH3surface exchange.